Skip to main content
Log in

A UV Spectroscopic Study of the Photoprotective Properties of Troxerutin, Ferulic Acid, and Aqueous Extracts of Melissa officinalis and Mentha piperita

  • Sorption and Ion Exchange Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Both natural and manmade components are used as photoprotective means in cosmetics. In this work, the photoprotective properties of aqueous extracts of Melissa officinalis and Mentha piperita and of aqueous solutions of troxerutin and ferulic acid were studied by UV spectroscopy. The photoprotective performance of these substances was evaluated by such parameters as the sun protection factor SPFin vitro, critical wavelength λcrit, and ratio of the areas under the absorbance curve in the ranges 320–400 and 290–320 nm (UV-A/UV-B). The resistance of the substances to the UV radiation was also evaluated. The study revealed certain photoprotective properties of aqueous extracts of Melissa officinalis and Mentha piperita. The extract obtained from Melissa officinalis and treated to remove ballast substances showed the highest SPFin vitro value. However, the absorption properties of the vegetable extracts decrease in the course of prolonged UV irradiation simulating the solar irradiation. Troxerutin absorbs UV light mainly in the range 320–400 nm, is resistant to UV radiation and atmospheric oxygen in aqueous solutions, and can be used as a UV-A filter in cosmetic formulations. Ferulic acid absorbs UV radiation mainly in the wavelength range 280–320 nm, but under the action of UV radiation the absorption properties of a ferulic acid solution change significantly. The UV spectrum of ferulic acid also changes under the action of atmospheric oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Purtskhvanidze, V.A., Simakov, Yu.G., and Batkaeva, N.V., Sovrem. Nauka: Aktual’n. Probl. Teor. Prakt., Ser.: Estestv. Tekh. Nauki, 2017, no. 9, pp. 72–78.

  2. Olisova, O.Yu., Vladimirova, E.V., and Babushkin, A.M., Ross. Zh. Kozhn. Vener. Bolezn., 2012, no. 6, pp. 57–62.

  3. Solovchenko, A.E. and Merzlyak, M.N., Fiziol. Rast., 2008, vol. 55, no. 6, pp. 803–822.

    Google Scholar 

  4. Akimov, V.G., Vestn. Dermatol. Venerol., 2008, no. 3, pp. 81–84.

    Google Scholar 

  5. Albukhaidar, A., Potapovich, A.I., and Kostyuk, V.A., Zh. Bel. Gos. Univ., Biol., 2017, no. 1, pp. 3–12.

    Google Scholar 

  6. Goncharova, E.N., Vasilenko, M.I., Kuznetsova, O.I., Kurzenev, I.R., and Kucherova, Yu.O., Chem. Bull., 2021, vol. 4, no. 3, pp. 95–105.

    Google Scholar 

  7. Il’ina, S.I., Komlyashev, R.B., Nosyrev, M.A., Sipyagina, T.A., and Khomenkov, A.S., Chem. Bull., 2021, vol. 4, no. 1, pp. 25–38.

    Google Scholar 

  8. Pavlov, A.V., Tarasov, A.V., and Solov’eva, O.Yu., Chem. Bull., 2021, vol. 4, no. 2, pp. 7–16.

    CAS  Google Scholar 

  9. Sverguzova, S.V., Sapronova, Zh.A., Loktionova, E.V., Sysa, V.I., and Shaikhiev, I.G., Chem. Bull., 2021, vol. 4, no. 1, pp. 44–55.

    CAS  Google Scholar 

  10. Khramchenkova, O.M. and Matveenkov, M.V., Zh. Bel. Gos. Univ., Ekol., 2018, no. 4, pp. 52–62.

    Google Scholar 

  11. Khramchankova, V.M., Theor. Appl. Sci., 2020, vol. 6, no. 86, pp. 71–77. https://doi.org/10.15863/TAS.2020.06.86.13

    Article  Google Scholar 

  12. Khan, M.A., J. Pharm. Biol., 2014, vol. 4, no. 1, pp. 9–11.

    Google Scholar 

  13. de Oliveira-Junior, R.G., Souza, G.R., Amanda Leite Guimarães, A.L., de Oliveira, A.P., Araujo, C.S., Silva, J.C., Pacheco, A.G.M., de Lima-Saraiva, S.R.G., Rolim, L.A., Neto, P.J.R., Castro, R.N., and Almeida, J.R.G.S., Afr. J. Pharm. Pharmacol., 2015, vol. 9, no. 22, pp. 576–584. https://doi.org/10.5897/ajpp2015.4315

    Article  Google Scholar 

  14. Chesnokova, N.N., Kononova, S.V., Petrova, S.V., and Pisanenko, D.V., Remedium, 2017, no. 5, pp. 36–42.

    Article  Google Scholar 

  15. Sazonov, A.B. and D’yakov, I.N., Statsionarozameshch. Tekhnol.: Ambul. Khirurg., 2014, nos. 1–2, pp. 56–58.

    Google Scholar 

  16. Abisalova, I.L., Fedorova, E.P., and Maslovskaya, E.A., Farmats. Farfmakol., 2014, no. 5(6), pp. 17–23.

    Google Scholar 

  17. Dutra, E.A., da Costa e Oliveira, D.A.G., Kedor-Hackmann, E.R.M., and Santoro, M.I.R.M., Revista Brasil. Ciênc. Farm., 2004, vol 40, no. 3, pp. 381–385. https://doi.org/10.1590/S1516-93322004000300014

    Article  CAS  Google Scholar 

  18. Shubert, T.A. and Kravchenko, N.T., in Fenol’nye soedineniya i ikh biologicheskie funktsii (Phenolic Compunds and Their Biological Functions), Moscow: Nauka, 1968, pp. 247–254.

    Google Scholar 

  19. Ivashev, M.N. and Chuklin, R.E., Farmats. Farmakol., 2013, no. 1(1), pp. 44–48.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Larionov.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larionov, E.A., Larionova, V.M. & Kozlova, E.M. A UV Spectroscopic Study of the Photoprotective Properties of Troxerutin, Ferulic Acid, and Aqueous Extracts of Melissa officinalis and Mentha piperita. Russ J Appl Chem 95, 1823–1828 (2022). https://doi.org/10.1134/S1070427222120096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222120096

Keywords:

Navigation