Skip to main content
Log in

A Study of Biodegradation Kinetics of Cellulose and Its Derivatives Using of the Sturm Test

  • Macromolecular Compounds and Polymeric Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The biodegradation kinetics of such polysaccharide materials as microcrystalline cellulose, hydrated cellulose (viscose fiber), and native starch (reference sample) was studied. The biodegradation kinetics was evaluated by accumulation of carbon dioxide in the course of mineralization of organic substances under the action of soil microbiota (soil inoculum) using the Sturm test. The degrees of biodegradation of powdered fibrous cellulose and hydrated cellulose were found to be similar: 69.2 and 67.0% in 98 days. Microcrystalline cellulose appeared to be resistant to microbiological degradation (2.0% degradation), which is due to high stability of crystalline formations under the action of microbial metabolism products. After the biodegradation experiments, the strongly degrading cellulose samples had numerous structural defects, their color changed, and signs of the development of micromycetes were revealed. The absorption intensity in the regions corresponding to the O–H and C–O vibrations in the IR spectra decreased, which proves the degradation of polysaccharides. On the other hand, the intensity of the N–H vibration bands increased, which suggests accumulation of chitin, the main component of the cell walls of microscopic fungi fixed and sprouted on the sample surface. Biodegradation leads to a decrease in the molecular mass of powdered cellulose and hydrated cellulose samples, which is confirmed by a decrease in the temperature of thermal oxidative degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Chmolowska, D., Hamda, N., and Laskowski, R., J. Soils Sediments, 2017, vol. 17, no. 2, pp. 299–305. https://doi.org/10.1007/s11368-016-1536-9

    Article  CAS  Google Scholar 

  2. Bayer, E.A., Shoham, Y., and Lamed, R., in The Prokaryotes, Dworkin, M.,  Falkow, S., Rosenberg, E., Schleifer,  K.-H., and Stackebrandt, E., Eds., New York: Springer, 2006, pp. 578–617. https://doi.org/10.1007/0-387-30742-7_19

    Article  Google Scholar 

  3. Mastalygina, E.E., Pantyukhov, P.V., and Popov, A.A., IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 369, no. 1, ID 012044. https://doi.org/10.1088/1757-899X/369/1/012044

    Article  Google Scholar 

  4. Zambrano, M.C., Pawlak, J.J., Daystar, J., Ankeny, M., Goller, C.C., and Venditti, R.A., Mar. Pollut. Bull., 2020, vol. 151, ID 110826. https://doi.org/10.1016/j.marpolbul.2019.110826

    Article  CAS  PubMed  Google Scholar 

  5. Van Der Zee, M., Stolrrjesdijk, J.H., Feil, H., and Feijen, J., Chemosphere, 1998, vol. 36, no. 3, pp. 461–473. https://doi.org/10.1016/s0045-6535(97)10017-0

    Article  CAS  PubMed  Google Scholar 

  6. Erdal, N.B. and Hakkarainen, M., Biomacromolecules, 2022, vol. 23, no. 7, pp. 2713–2729. https://doi.org/10.1021/acs.biomac.2c00336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shabarin, A.A., Kuz’min, A.M., Matyushkina, Yu.I., and Shabarin, I.A., Khim. Rast. Syr’ya, 2022, no. 2, pp. 307–314. https://doi.org/10.14258/jcprm.2022029532

    Article  CAS  Google Scholar 

  8. Zykova, A.K., Pantyukhov, P.V., Mastalygina, E.E., Chaverri-Ramos, C., Nikolaeva, S.G., Saavedra-Arias, J.J., Popov, A.A., Wortman, S.E., and Poletto, M., Polymers, 2021, vol. 13, no. 13, ID 2138. https://doi.org/10.3390/polym13132138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gamage, A., Liyanapathiranage, A., Manamperi, A., Gunathilake, C., Mani, S., Merah, O., and Madhujith, T., Sustainability, 2022, vol. 14, no. 10, ID 6085. https://doi.org/10.3390/su14106085

    Article  CAS  Google Scholar 

  10. Rizkiansyah, R.R., Mardiyati, S., and Suratman, R., AIP Conf. Proc., 2016, vol. 1725, ID 020071. https://doi.org/10.1063/1.4945525

    Article  Google Scholar 

  11. Moon, R.J., Martini, A., Nairn, J., Simonsen, J., and Youngblood, J., Chem. Soc. Rev., 2011, vol. 40, no. 7, pp. 3941–3994. https://doi.org/10.1039/c0cs00108b

    Article  CAS  PubMed  Google Scholar 

  12. Kennedy, J.F. and Knill, C.J., in Medical Textiles and Biomaterials for Healthcare, Sawston: Woodhead, 2006, pp. 3–22. https://doi.org/10.1533/9781845694104.1.3

    Article  Google Scholar 

  13. Jedvert, K. and Heinze, T., J. Polym. Eng., 2017, vol. 37, no. 9, pp. 845–860. https://doi.org/10.1515/polyeng-2016-0272.

    Article  CAS  Google Scholar 

  14. Sun, S., Sun, S., Cao, X., and Sun, R., Bioresource Technol., 2016, vol. 199, pp. 49–58. https://doi.org/10.1016/j.biortech.2015.08.061

    Article  CAS  Google Scholar 

  15. Watcharakul, S., Umsakul, K., Hodgson, B., Chumeka, W., and Tanrattanakul, V., Electron. J. Biotechnol., 2012, vol. 15, no. 1, p. 0. https://doi.org/10.2225/vol15-issue1-fulltext-10

    Article  CAS  Google Scholar 

  16. Varshney, S., Sain, A., Gupta, D., and Sharma, S., Indian J. Microbiol., 2021, vol. 61, no. 1, pp. 31–37. https://doi.org/10.1007/s12088-020-00903-5

    Article  CAS  PubMed  Google Scholar 

  17. Lynd, L.R., Weimer, P.J., van Zyl, W.H., and Pretorius, I.S., Microbiol. Mol. Biol. Rev., 2002, vol. 66, no. 3, pp. 506–577. https://doi.org/10.1128/MMBR.66.3.506-577.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kumirska, J., Czerwicka, M., Kaczyński, Z., Bychowska, A., Brzozowski, K., Thöming, J., and Stepnowski, P., Mar. Drugs, 2010, vol. 8, no. 5, pp. 1567–1636. https://doi.org/10.3390/md8051567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nikonenko, N.A., Buslov, D.K., Sushko, N.I., and Zhbankov, R.G., Biopolymers, 2000, vol. 57, no. 4, pp. 257–262. https://doi.org/10.1002/1097-0282(2000)57:4<257::AID-BIP7>3.0.CO;2-3

    Article  CAS  PubMed  Google Scholar 

  20. Yang, H., Yan, R., Chen, H., Lee, D.H., and Zheng, C., Fuel, 2007, vol. 86, nos. 12–13, pp. 1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013

    Article  CAS  Google Scholar 

  21. Veeramachineni, A.K., Sathasivam, T., Muniyandy, S., Janarthanan, P., Langford, S.J., and Yan, L.Y., Appl. Sci., 2016, vol. 6, no. 6, ID 170. https://doi.org/10.3390/app6060170

    Article  CAS  Google Scholar 

  22. Yeng, L.C., Wahit, M.U., and Othman, N., J. Teknol., 2015, vol. 75, no. 11, pp. 107–112. https://doi.org/10.11113/jt.v75.5338

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The studies were performed using the equipment of the Center for Shared Use at the Plekhanov Russian University of Economics.

Author information

Authors and Affiliations

Authors

Contributions

E.E. Mastalygina: studies by optical microscopy and Fourier IR spectroscopy; Z.R. Abushakhmanova: studies by Fourier IR spectroscopy; S.D. Brovina: studies by thermal gravimetric analysis; M.Yu. Guivan: studies by optical microscopy, determination of the size and structural parameters: V.A. Ovchinnikov and P.V. Pantyukhov: Sturm tests.

Corresponding authors

Correspondence to E. E. Mastalygina or Z. R. Abushakhmanova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, Nos. 11–12, pp. 1448–1458, August, 2022 https://doi.org/10.31857/S0044461822110093

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mastalygina, E.E., Abushakhmanova, Z.R., Guyvan, M.Y. et al. A Study of Biodegradation Kinetics of Cellulose and Its Derivatives Using of the Sturm Test. Russ J Appl Chem 95, 1790–1799 (2022). https://doi.org/10.1134/S1070427222120059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222120059

Keywords:

Navigation