Skip to main content
Log in

Selective Synthesis of Olefins on a Co-Al2O3/SiO2 Catalyst by the Fisher–Tropsch Method

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The synthesis of C5+ hydrocarbons, including unsaturated ones, on the Co-Al2O3/SiO2 catalyst was studied in flow and flow-circulation operation modes at a pressure of 2.0 MPa, a gas space velocity of 1000 h–1, H2/CO ratios in the initial gas of 2.0, 1.85, and 1.70, circulation rate of 4–16. It was determined that the maximum parameters of the synthesizing C5+ hydrocarbons from CO and H2 on this catalyst—CO conversion, selectivity, and performance for C5+ products—are detected at a circulation rate of 8 over a whole range of the studied H2/CO ratios in the initial syngas. The content of olefins in the synthesis products was found to increase to ~30 wt % when using the circulation rate of 8–16. It was found that upon the synthesis of hydrocarbons by the Fischer–Tropsch method in the flow-circulation mode, the rate of catalyst deactivation diminishes, which may be due to a decrease in the partial pressure of water in the reaction zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Golub’, F.S., Bolotov, V.A., and Parmon, V.N., Kataliz v Prom-sti, 2020, vol. 20, no. 6, pp. 433–455. https://doi.org/10.18412/1816-0387-2020-6-433-455

    Article  CAS  Google Scholar 

  2. Zhai, P., Li, Y., Wang, M., Liu, J., Cao, Z., Zhang, J., Xu, Y., Liu, X., Li Y.-W., Zhu, Q., Xiao, D., Wen X.-D., and Ma, D., Chemistry, 2021, vol. 7, no. 11, pp. 3027–3051. https://doi.org/10.1016/j.chempr.2021.08.019

    Article  CAS  Google Scholar 

  3. Yahyazadeh, A., Dalai, A.K., Ma, W., and Zhang, L., Reactions, 2021, vol. 2, no. 3, pp. 227–257. https://doi.org/10.3390/reactions2030015

    Article  Google Scholar 

  4. Savostʹyanov, A.P., Yakovenko, R.E., Narochniy, G.B., Sulima, S.I., Bakun, V.G., Soromotin, V.N., and Mitchenko, S.A., Catal. Commun., 2017, vol. 99, pp. 25–29. https://doi.org/10.1016/j.catcom.2017.05.021

    Article  CAS  Google Scholar 

  5. Keyvanloo, K., Fisher, M.J., Hecker, W.C., Lancee, R.J., Jacobs, G., Bartholomew, C.H., J. Catal., 2015, vol. 327, pp. 33–47. https://doi.org/10.1016/j.jcat.2015.01.022

    Article  CAS  Google Scholar 

  6. Moodley, D.J., Van de Loosdrecht, J., Saib, A.M., Overett, M.J., Datye, A.K., and Niemantsverdriet, J.W., Appl. Catal. A: General, 2009, vol. 354, no. 1–2, pp. 102–110. https://doi.org/10.1016/j.apcata.2008.11.015

    Article  CAS  Google Scholar 

  7. Niu, C., Xia, M., Chen, C., Ma, Z., Jia, L., Hou, B., and Li, D., Appl. Catal. A: General, 2020, vol. 601, pp. 117630. https://doi.org/10.1016/j.apcata.2020.117630

    Article  CAS  Google Scholar 

  8. Rytter, E., Tsakoumis, N.E., and Holmen, A., Catal. Today, 2016, vol. 261, pp. 3–16. https://doi.org/10.1016/j.cattod.2015.09.020

    Article  CAS  Google Scholar 

  9. Yang, J., Rodriguez, C.L., Qi, Y., Ma, H., Holmen, A., and Chen, D., Appl. Catal. A: General, 2020, vol. 598, pp. 117564. https://doi.org/10.1016/j.apcata.2020.117564

    Article  CAS  Google Scholar 

  10. Muleja, A.A., Gorimbo, J., and Masuku, C.M., Catalysts, 2019, vol. 9, no. 9, pp. 746–760. https://doi.org/10.3390/catal9090746

    Article  CAS  Google Scholar 

  11. Argyle, M.D. and Bartholomew, C.H., Catalysts, 2015, vol. 5, no. 1, pp. 145–269. https://doi.org/10.3390/catal5010145

    Article  CAS  Google Scholar 

  12. Zhang, Y., Yao, Y., Chang, J., Lu, X., Liu, X., and Hildebrandt, D., AIChE, J., 2020, vol. 66, no. 11, pp. e17029. https://doi.org/10.1002/aic.17029

    Article  CAS  Google Scholar 

  13. Soromotin, V.N., Yakovenko, R.E., Medvedev, A.V., and Mitchenko, S.A., Kinet. Catal., 2021, vol. 62, no. 6, pp. 845–852. https://doi.org/10.1134/S002315842106015X

    Article  CAS  Google Scholar 

  14. Wolf, M., Gibson, E.K., Olivier, E.J., Neethling, J.H., and Catlow, C.R.A., Fischer, N., Claeys, M., ACS Catal., 2019, vol. 9, no. 6, pp. 4902–4918. https://doi.org/10.1021/acscatal.9b00160

    Article  CAS  Google Scholar 

  15. Tucker, C.L., Claeys, M., and Van Steen, E., Catal. Sci. Technol., 2020, vol. 10, no. 20, pp. 7056–7066. https://doi.org/10.1039/D0CY00929F

    Article  CAS  Google Scholar 

  16. Soromotin, V.N., Yakovenko, R.E., Krasnyakova, T.V., Svetogorov, R.D., and Mitchenko, S.A., Kinet. Catal., 2022, vol. 63, no. 6, pp. 765–772. https://doi.org/10.1134/S0023158422060131

    Article  CAS  Google Scholar 

  17. Kwak, G., Woo, M.H., Kang, S.C., Park, H.G., Lee, Y.J., Jun, K.W., and Ha, K.S., J. Catal., 2013, vol. 307, pp. 27–36. https://doi.org/10.1016/j.jcat.2013.06.029

    Article  CAS  Google Scholar 

  18. Hazemann, P., Decottignies, D., Maury, S., Humbert, S., Meunier, F.C., and Schuurman, Y., J. Catal., 2021, vol. 397, pp. 1–12. https://doi.org/10.1016/j.jcat.2021.03.005

    Article  CAS  Google Scholar 

Download references

Funding

The study was carried out with the financial support of the Russian Foundation for Basic Research within the framework of scientific project no. 20-33-90149 and the Ministry of Education and Science, Russian Federation within the framework of the state problem FENN-2020-0021 (application no. 2019-0990) using the equipment of the Central Collective Use Center “Nanotechnologies” of the Platov South-Russian State Polytechnic University (NPI).

Author information

Authors and Affiliations

Authors

Contributions

I.N. Zubkov: catalyst synthesis, organization of shift work for experimental studies, participation in summarizing the results of experimental studies, preparation of the article text; A.P. Savostyanov: determination of the research goal and setting of tasks, establishment of dependencies between a set of operational parameters and catalyst activity; R.E. Yakovenko: development of a methodology for conducting a study of catalytic activity, carrying out calculations to determine the partial water pressure depending on the technological mode; V.N. Soromotin: development of a method for analyzing the composition of condensed synthesis products, interpretation of the results of the study; O.D. Denisov: conducting research by the thermally programmed oxidation method, establishing the causes of changes in the catalyst deactivation rate and the state of the active component of catalysts at selected operational parameters; S.S. Demchenko: fractionation and determination of the composition of condensed synthesis products by capillary gas-liquid chromatography-mass spectrometry, analysis of the causes of changes in the group composition of products depending on the syngas composition and the operating mode of the reactor.

Corresponding author

Correspondence to R. E. Yakovenko.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, Nos. 11–12, pp. 1382–1388, August, 2022 https://doi.org/10.31857/S0044461822110020

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zubkov, I.N., Savost’yanov, A.P., Soromotin, V.N. et al. Selective Synthesis of Olefins on a Co-Al2O3/SiO2 Catalyst by the Fisher–Tropsch Method. Russ J Appl Chem 95, 1776–1789 (2022). https://doi.org/10.1134/S1070427222120047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222120047

Keywords:

Navigation