Skip to main content
Log in

Disproportionation of Toluene on ZSM-12 Zeolites

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The properties of ZSM-12 zeolites (SiO2/Al2O3 = 70) synthesized under hydrothermal conditions have been studied. The prepared samples were examined by X-ray phase analysis, low-temperature nitrogen adsorption–desorption, scanning electron microscopy, solid-state 27Al NMR spectroscopy, infrared spectroscopy, NH3 thermally programmed desorption, infrared spectroscopy of adsorbed pyridine, and X-ray fluorescence spectroscopy and investigated in the toluene disproportionation reaction under the following conditions: Т = 300–480°С, mass feedstock flow rate 1.5, 3, and 6 h–1, Р2) = 10 atm. It was found that a ZSM-12 zeolite sample synthesized using monoethanol-N,N-dimethyl-N-ethylammonium bromide as a template is the most effective catalyst for the toluene disproportionation. It is shown that the toluene disproportionation occurs with the formation of benzene and a mixture of ortho-, meta-, para-xylenes. The fraction of the latter in the liquid reaction products was up to 50%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Tsai, T.-C., Chen, W.-H., Liu, S.-B., Tsai, C.-H., and Wang, I., Catal. Today, 2002, vol. 73, no. 1–2, pp. 39–47. https://doi.org/10.1016/S0920-5861(01)00516-8

    Article  CAS  Google Scholar 

  2. Krejčí, A., Al-Khattaf, S., Ali, M.A., Bejblova, M., and Cejka, J., Appl. Catal. A: General, 2010, vol. 377, no. 1–2, pp. 99–106. https://doi.org/10.1016/j.apcata.2010.01.026

    Article  CAS  Google Scholar 

  3. Al-Khattaf, S., Tukur, N.M., and Al-Amer, A., Ind. Eng. Chem. Res., 2007, vol. 46, no. 13, pp. 4459–4467. https://doi.org/10.1021/ie0702781

    Article  CAS  Google Scholar 

  4. Wu, P., Komatsu, T., and Yashima, T., Micropor. Mesopor. Mater., 1998, vol. 22, no. 1–3, pp. 343–356. https://doi.org/10.1016/S1387-1811(98)00114-0

    Article  CAS  Google Scholar 

  5. Kulikov, L.A., Tsaolin, D.E., Knyazeva, M.I., Levin, I.S., Kardashev, S.V., Filippova, T.Yu., Maximov, A.L., and Karakhanov, E.A., Petrol. Chem., 2019, vol. 59, no. S1, pp. 60–65. https://doi.org/10.1134/S0965544119130097

    Article  Google Scholar 

  6. Kamimura, Y., Iyoki, K., Elangovan, S.P., Itabashi, K., Shimojima, A., and Okubo, T., Micropor. Mesopor. Mater., 2012, vol. 163, pp. 282–290. https://doi.org/10.1016/j.micromeso.2012.07.014

    Article  CAS  Google Scholar 

  7. Araujo, A.S., Reac. Kinet. Catal. Lett., 2005, vol. 84, no. 2, pp. 287–293. https://doi.org/10.1007/s11144-005-0221-6

    Article  CAS  Google Scholar 

  8. Araujo, A.S., Silva, A.O.S., Souza, M.J.B., Coutinho, A.C.S.L.S., Aquino, J.M.F.B., Moura, J.A., and Pedrosa, A.M.G., Adsorption, 2005, vol. 11, no. 2, pp. 159–165. https://doi.org/10.1007/s10450-005-4909-8

    Article  CAS  Google Scholar 

  9. Sanhoob, M.A., Muraza, O., Yoshioka, M., Qamaruddin, M., and Yokoi, T., J. Anal. Appl. Pyrol., 2018, vol. 129, pp. 231–240. https://doi.org/10.1016/j.jaap.2017.11.007

    Article  CAS  Google Scholar 

  10. Zhu, H.-B., Xia, Q.-H., Guo, X.-T., Su, K.-X., Hu, D., Ma, X., Zeng, D., and Deng, F., Mater. Lett., 2006, vol. 60, no. 17–18, pp. 2161–2166. https://doi.org/10.1016/j.matlet.2005.12.091

    Article  CAS  Google Scholar 

  11. Wu, W., Wu, W., Kikhtyanin, O.V., Li, F., Toktarev, A.V., Ayupov, A.B., and Khabibulin, J.F., Appl. Catal. A: General, 2010, vol. 375, no. 2, pp. 279–288. https://doi.org/10.1016/j.apcata.2010.01.003

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was performed using the equipment of the Center of Collective Use “Analytical Center for Problems of Deep Oil Refining and Petrochemistry” of Topchiev Institute of Petroleum Chemistry, Russian Academy of Sciences.

Funding

The study was supported by a grant from the Russian Science Foundation (project no. 22-79-10294).

Author information

Authors and Affiliations

Authors

Contributions

D.E. Tsaplin: carrying out the synthesis of zeolites in the sodium form and catalysts based on them; V.A. Ostroumova: carrying out ion exchange procedures to produce ammonium forms of zeolites; D.N. Gorbunov: carrying out catalytic experiments; L.A. Kulikov: carrying out physical and chemical analyzes by the X-ray phase analysis, low-temperature nitrogen adsorption-desorption, solid-state 27Al NMR spectroscopy; E.R. Naranov: carrying out physical and chemical analyzes using NH3-TPD, infrared spectroscopy of adsorbed pyridine and X-ray fluorescence spectroscopy; S.V. Egazaryants: formulation of the study goals on synthesis of zeolites and selection of conditions for catalytic experiments.

Corresponding authors

Correspondence to D. E. Tsaplin or V. A. Ostroumova.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, Nos. 11–12, pp. 1400–1409, August, 2022 https://doi.org/10.31857/S0044461822110056

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsaplin, D.E., Ostroumova, V.A., Gorbunov, D.N. et al. Disproportionation of Toluene on ZSM-12 Zeolites. Russ J Appl Chem 95, 1767–1775 (2022). https://doi.org/10.1134/S1070427222120035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222120035

Keywords:

Navigation