Skip to main content
Log in

Hydrodeoxygenation of Bio-oil Components Containing a Guaiacol Fragment in the Presence of a Ruthenium-Suppoting Mesoporous Aluminosilicate Catalyst

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

A ruthenium catalyst based on hexagonal mesoporous silica modified with aluminum (Al-HMS structural type) of a Si/Al ratio equal to 10 was studied in the hydrodeoxygenation reaction of bio-oil components containing a guaiacol fragment. The catalyst was tested in the hydrodeoxygenation of guaiacol, methoxyguaiacol, formylguaiacol, and propylguaiacol in the presence of water at a hydrogen pressure of 6.0 MPa and a temperature of 250°C. The effect of the substrate structure on the conversion and selectivity of hydrotransformation towards fully hydrogenated and deoxygenated products is shown. The effect of temperature in the range of 210–290°C on the conversion and distribution of guaiacol hydrodeoxygenation products at various hydrogen pressures (2.5 and 6.0 MPa) is demonstrated. Experiments were carried out on the hydrodeoxygenation of guaiacol in a mixture with water, n-dodecane, and methanol at a hydrogen pressure of 6.0 MPa and a temperature of 250°C. The effect of the model mixture composition on the conversion and distribution of guaiacol hydrodeoxygenation products is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Su, G., Ong, H.C., Mofijur, M., Mahlia, T.M.I., and Ok, Y.S., J. Hazard. Mater., 2022, vol. 424, ID 127396. https://doi.org/10.1016/j.jhazmat.2021.127396

    Article  CAS  PubMed  Google Scholar 

  2. Talmadge, M.S., Baldwin, R.M., Biddy, M.J., McCormick, R.L., Beckham, G.T., Ferguson, G.A., Czernik, S., Magrini-Bair, K.A., Foust, T.D., Metelski, P.D., Hetrick, C., and Nimlos, M.R., Green Chem., 2014, vol. 16, pp. 407–453. https://doi.org/10.1039/C3GC41951G

    Article  CAS  Google Scholar 

  3. Mäki-Arvela, P., Murzin, D.Y., Catal., 2017, vol. 7, no. 9, ID 265. https://doi.org/10.3390/catal7090265

    Article  CAS  Google Scholar 

  4. Mortensen, P.M., Grunwaldt, J.D., Jensen, P.A., Knudsen, K.G., and Jensen, A.D., Appl. Catal. A: General, 2011, vol. 407, pp. 1–19. https://doi.org/10.1016/j.apcata.2011.08.046

    Article  CAS  Google Scholar 

  5. Tan, Q., Wang, G., Nie, L., Dinse, A., Buda, C., Shabaker, J., and Resasco, D.E., ACS Catal., 2015, vol. 5, pp. 6271–6283. https://doi.org/10.1021/acscatal.5b00765

    Article  CAS  Google Scholar 

  6. Maximov, A., Zolotukhina, A., Murzin, V., Karakhanov, E., and Rosenberg, E., ChemCatChem., 2015, vol. 7, pp. 1197–1210. https://doi.org/10.1002/cctc.201403054

    Article  CAS  Google Scholar 

  7. Shu, R., Li, R., Lin, B., Wang Ch., Cheng Zh., and Chen, Y., Biomass Bioenergy, 2020, vol. 132, ID 105432. https://doi.org/10.1016/j.biombioe.2019.105432

    Article  CAS  Google Scholar 

  8. Gea, S., Hutapea, Y.A., Piliang, A.F.R., Pulungan, A.N., Rahayu, R., Layla, J., Tikoalu, A.D., Wijaya, K., and Saputri, W.D., Bioenergy Res., 2023, vol. 16, pp. 325–347. https://doi.org/10.1007/s12155-022-10438-w

    Article  CAS  Google Scholar 

  9. Elliott, D.C., Meier, D., Oasmaa, A., van de Beld, B., Bridgwater, A.V., and Marklund, M., Energy Fuels, 2017, vol. 31, pp. 5111–5119. https://doi.org/10.1021/acs.energyfuels.6b03502

    Article  CAS  Google Scholar 

  10. Phan, T.N., Park, Y.-K., Lee, I.-G., and Ko, C.H., Appl. Catal. A: General, 2017, vol. 544, pp. 84–93. https://doi.org/10.1016/j.apcata.2017.06.029

    Article  CAS  Google Scholar 

  11. Tanev, P.T., Chibwe, M., and Pinnavaia, T.J., Nature, 1994, vol. 368, no. 6469, pp. 321–323. https://doi.org/10.1038/368321a0

    Article  CAS  PubMed  Google Scholar 

  12. Nava, R., Morales, J., Alonso, G., Ornelas, C., Pawelec, B., and Fierro, J.L.G., Appl. Catal. A: General, 2007, vol. 321, pp. 58–70. https://doi.org/10.1016/j.apcata.2007.01.038

    Article  CAS  Google Scholar 

  13. Doukeh, R., Bombos, D., Bombos, M., Oprescu, E.E., Dumitrascu, Gh., Vasilievici, G., and Calin, C., Sci. Rep., 2021, vol. 11, no. 1, ID 6176. https://doi.org/10.1038/s41598-021-85244-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhou, M., Ye, J., Liu, P., Xu, J., and Jiang, J., ACS Sustainable Chem. Eng., 2017, vol. 5, pp. 8824–8835. https://doi.org/10.1021/acssuschemeng.7b01615

    Article  CAS  Google Scholar 

  15. Zhang, C., Jia, C., Cao, Y., Yao, Y., Xie, S., Zhang, S., and Lin, H., Green Chem., 2019, vol. 21, pp. 1668–1679. https://doi.org/10.1039/C8GC04017F

    Article  CAS  Google Scholar 

  16. Zeng, Y., Wang, Z., Lin, W., and Song, W., Chem. Eng. J., 2017, vol. 320, pp. 55–62. https://doi.org/10.1016/j.cej.2017.03.028

    Article  CAS  Google Scholar 

  17. González-Borja, M.Á. and Resasco, D.E., Energy Fuels, 2011, vol. 25, pp. 4155–4162. https://doi.org/10.1021/ef200728r

    Article  CAS  Google Scholar 

  18. Bykova, M.V., Zavarukhin, S.G., Trusov, L.I., and Yakovlev, V.A., Kinet. Catal., 2013, vol. 54, pp. 40–48. https://doi.org/10.1134/S0023158413010023

    Article  CAS  Google Scholar 

  19. Chang, J., Danuthai, T., Dewiyanti, S., Wang, C., and Borgna, A., ChemCatChem., 2013, vol. 5, pp. 3041–3049. https://doi.org/10.1002/cctc.201300096

    Article  CAS  Google Scholar 

  20. Bu, Q., Lei, H., Zacher, A.H., Wang, L., Ren, S., Liang, J., Wei, Y., Liu, Y., Tang, J., Zhang, Q., and Ruan, R., Bioresour. Technol., 2012, vol. 124, pp. 470–477. https://doi.org/10.1016/j.biortech.2012.08.089

    Article  CAS  PubMed  Google Scholar 

  21. Campos-Franzani, M.I., Gajardo-Parra, N.F., Pazo-Carballo, C., Aravena, P., Santiago, R., Palomar, J., Escalona, N., and Canales, R.I., Fuel, 2020, vol. 280, ID 118405. https://doi.org/10.1016/j.fuel.2020.118405

    Article  CAS  Google Scholar 

  22. Kumar, A. and Thallada, B., Sustain. Energy Fuels, 2021, vol. 5, pp. 3802–3817. https://doi.org/10.1039/D1SE00102G

    Article  CAS  Google Scholar 

  23. He, L., Qin, Y., Lou, H., and Chen, P., RSC Adv., 2015, vol. 5, pp. 43141–43147. https://doi.org/10.1039/C5RA00866

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation grant no. 22-79-00118.

https://rscf.ru/project/22-79-00118/

Author information

Authors and Affiliations

Authors

Contributions

E.A. Karakhanov proposed the concept of the study; E.A. Roldugina conducted catalytic experiments and is the main author of the manuscript text; S.V. Kardashev analyzed the products of catalytic reactions; A.L. Maksimov contributed to the interpretation of the catalysis results.

Corresponding author

Correspondence to E. A. Roldugina.

Ethics declarations

A.L. Maksimov is the editor-in-chief of the Journal of Applied Chemistry. The remaining co-authors declare no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, Nos. 11–12, pp. 1389–1399, August, 2022 https://doi.org/10.31857/S0044461822110044

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roldugina, E.A., Kardashev, S.V., Maksimov, A.L. et al. Hydrodeoxygenation of Bio-oil Components Containing a Guaiacol Fragment in the Presence of a Ruthenium-Suppoting Mesoporous Aluminosilicate Catalyst. Russ J Appl Chem 95, 1756–1766 (2022). https://doi.org/10.1134/S1070427222120023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222120023

Keywords:

Navigation