Skip to main content
Log in

Activated Carbon Loaded Hexaethylphosphoroustriamide Copper Chloride Catalyzed Acetylene Hydrochlorination Reaction

  • Various Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Activated carbon loaded hexaethylphosphoroustriamide (HEPT) copper chloride catalyst was prepared by the impregnation method. The catalytic performance of this catalyst was tested in the acetylene hydrochlorination reaction and compared with that of the activated carbon loaded copper chloride catalyst. At the condition of 140°C, volume space-time velocity of C2H2 on unit mass catalyst of 50 h−1, molar ratio of HCl to C2H2 of 1.05:1 and real copper loading (w) of 12.85%, C2H2 conversion of 90.17% and vinyl chloride selectivity of 95.47% were achieved. Under the same reaction conditions, its catalytic performance is better than that of the activated carbon supported copper chloride catalyst. Through X-ray diffraction (XRD), scanning electron microscope with energy dispersive X-ray (SEM-EDX), X-ray photoelectron spectroscopy (XPS), temperature-programmed desorption (TPD), infrared spectroscopy (IR), inductively coupled plasma atomic emission spectroscopy (ICP-AES) characterization methods, it can be confirmed that the catalyst with HEPT has stronger adsorption capacity of hydrogen chloride, which can reduce the reduction of Cu2+ species, which is responsible for the enhancement of the catalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Shen, Z., Zhao, H., Liu, Yu., et al., Reaction Chemistry and Engineering, 2018, vol. 3, pp. 34–40. https://doi.org/10.1039/C7RE00201G

    Article  CAS  Google Scholar 

  2. Chao, S., Zou, F., Wan, F., et al., Scientific Reports, 2017, vol. 7, pp. 1–7. https://doi.org/10.1038/srep39789

    Article  CAS  Google Scholar 

  3. Zhao, J., Gu, S., Xu, X., et al., Catalysis Science and Technology, 2016, vol. 6, pp. 3263–3270. https://doi.org/10.1039/C5CY02045J

    Article  CAS  Google Scholar 

  4. Wang, S., Shen, B., and Song., Q., Catalysis Letters, 2010, vol. 134, pp. 102–109. https://doi.org/10.1007/s10562-009-0216-4

    Article  CAS  Google Scholar 

  5. Zhang, H., Dai, B., Wang, X., et al., Journal of Industrial and Engineering Chemistry, 2012, vol. 18, pp. 49–54. https://doi.org/10.1016/j.jiec.2011.11.075

    Article  CAS  Google Scholar 

  6. Han, Y., Zhang, H., Li, Yu, et al., Catalysis Today, 2020, vol. 355, pp. 205–213. https://doi.org/10.1016/j.cattod.2019.03.042

    Article  CAS  Google Scholar 

  7. Zhang, H., Li, W., Jin, Y., et al., Applied Catalysis B: Environmental, 2016, vol. 189, pp. 56–64. https://doi.org/10.1016/j.apcatb.2016.02.030

    Article  CAS  Google Scholar 

  8. Jin, Y., Li, G., Zhang, J., et al., RSC Advances, 2015, vol. 5, pp. 37774–37779. https://doi.org/10.1039/C5RA03466C

    Article  CAS  Google Scholar 

  9. Shang, S., Zhao, W., Wang, Y., et al., Acs Catalysis, 2017, vol. 7, pp. 3510–3520. https://doi.org/10.1021/acscatal.7b00057

    Article  CAS  Google Scholar 

  10. Li, Yu, Dong, Y., Li, W., et al., Molecular Catalysis, 2017, vol. 443, pp. 220–227. https://doi.org/10.1016/j.mcat.2017.09.021

    Article  CAS  Google Scholar 

  11. Li, H., Wang, F., Cai, W., et al., Catalysis Science and Technology, 2015, vol. 5, pp. 5174–5184. https://doi.org/10.1039/c5cy00751h

    Article  Google Scholar 

  12. Hu, Y., Wang, Y., Wang, Y., et al., Applied Catalysis A: General, 2020, vol. 591, pp. 117408. https://doi.org/10.1016/j.apcata.2020.117408

    Article  CAS  Google Scholar 

  13. Kursheva, L., Kataeva, O., Krivolapov, D., et al., Heteroatom Chemistry, 2008, vol. 19, pp. 483–489. https://doi.org/10.1002/hc.20459

    Article  CAS  Google Scholar 

  14. Sassu, G., Zilio-Grandi, F., and Conte, A., Journal of Chromatography A, 1968, vol. 34, pp. 394–398. https://doi.org/10.1016/0021-9673(68)80074-3

    Article  CAS  Google Scholar 

  15. Froböse, E., and Löwe, A., Chemical Engineering Technology, 1998, vol. 21, pp. 175–178. https://doi.org/10.1002/(sici)1521-4125(199802)21:2<175::aid-ceat175>3.0.co;2-t

    Article  Google Scholar 

  16. Li, Li, Zhu, Zh., Yan, C., et al., Applied Catalysis A: General, 2007, vol. 320, pp. 166–172. https://doi.org/10.1016/j.apcata.2007.01.029

  17. Wuo, Y., Ma, Y., Li, Q., et al., Canadian Journal of Chemistry, 2021, vol. , 99, pp. 812–820. https://doi.org/10.1139/cjc-2020-0378

    Article  CAS  Google Scholar 

  18. Yang, Y., Zhao, Ch., Qiao, X., et al., Green Energy and Environment, 2022, vol. 1, p. 6. https://doi.org/10.1016/j.gee.2022.01.006

    Article  CAS  Google Scholar 

  19. Zhang, H., Dai, B., Li, W., et al., Journal of Catalysis, 2014, vol. 316, pp. 141–148. https://doi.org/10.1016/j.jcat.2014.05.005

    Article  CAS  Google Scholar 

  20. Liu, Y., Zhao, L., Zhang, Y., et al., Catalysts, 2020, vol. 10, p. 1218. https://doi.org/10.3390/catal10101218

    Article  CAS  Google Scholar 

  21. Bedenko, S., Dement’ev, K., and Maximov, K., Neftekhimiya, 2022, vol. 62, p. 6. https://doi.org/10.1134/S0965544122090031,

    Article  Google Scholar 

  22. Yan, Wang, Yao, Nian, Jinli, Zhang, et al., Molecular Catalysis, 2019, vol. 479, p. 110612. https://doi.org/10.1016/j.mcat.2019.110612

    Article  CAS  Google Scholar 

  23. Li, H., Cheng, R., Liu, Z., et al., Science of The Total Environment, 2019, vol. 683, pp. 638–647. https://doi.org/10.1016/j.scitotenv.2019.05.242

    Article  CAS  PubMed  Google Scholar 

  24. Faheem, M., Jiang, X., Wang, L., et al., Rsc Advances, 2018, vol. 8, pp. 5740–5748. https://doi.org/10.1039/C7RA13608K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Han, Y., Wang, Y., Wang, Y., et al., Applied Organometallic Chemistry, 2021, vol. 35, p. e6066. https://doi.org/10.1002/aoc.6066

    Article  CAS  Google Scholar 

Download references

Funding

We would like to acknowledge the financial supports for this work provided by Liaoning Provincial Department of Education (No. LJKMZ 20220764), Liaoning BaiQianWan Talents Program (2020B085), Liaoning Provincial Science and Technology Department, Applied Basic Research Program Project (2023JH2/101300006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhang, J. & Zhang, Y. Activated Carbon Loaded Hexaethylphosphoroustriamide Copper Chloride Catalyzed Acetylene Hydrochlorination Reaction. Russ J Appl Chem 95, 1738–1747 (2022). https://doi.org/10.1134/S1070427222110088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222110088

Keywords:

Navigation