Skip to main content
Log in

Structure and Physicochemical Properties of Collagen Gels Treated with Hyaluronic Acid

  • Macromolecular Compounds and Polymeric Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The parameters of the condensed state and structure of fibrillar collagen and the composition and structuring of calcium phosphates in collagen gel samples obtained from rat tail tendons were studied. After the acid extraction and gelation at 37°С, fibrillar collagen preserves the domain organization and undergoes dispersion to the subfibrillar level and aggregation; the extrafibrillar space is filled with a viscous liquid. The dilatancy arises at 37–40°С at low and medium shear stresses and rates. In the course of acid extraction, fibrillar collagen undergoes amorphization, its primary peptide chains are hydrated and undergo heterogeneous strengthening/softening; the interchain spaces undergo contraction/expansion. Calcium phosphates originating from the initial tendons and medium 199 undergo structuring into hydroxyapatites in the course of gelation. These hydroxyapatites undergo decarbonation on introducing hyaluronic acid and become close to hydroxyapatite Са10(РО4)6(ОН)2 in the structure. The gels treated with hyaluronic acid form strong networks and fibrillar nodes of increased connection, shifting the dilatancy toward higher shear rates and stresses. Collagen fibers undergo aggregation to form thickened platelike structures tending to exfoliation. The water-filled interfibrillar spaces are expanded. Hyaluronic acid prevents the amorphization of fibrillar collagen, reduces the intermolecular contact strength, and suppresses the growth of hydroxyapatite structural precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Jing Xie, Min Bao, Bruekers, S.M.C., and Huck, W.T.S., Appl. Mater. Interfaces, 2017, vol. 9, pp. 19630–19637. https://doi.org/10.1021/acsami.7b03883

    Article  CAS  Google Scholar 

  2. Stricklin, G.P., Jancic, L.Li., Wenczak, B.A., and Nanney, L.B., Am. J. Pathol., 1993, vol. 143, no. 6, pp. 657–1666.

    Google Scholar 

  3. Kandhwal, M., Behl, T., Singh, S., Sharma, N., Arora, S., Bhatia, S., Al-Harrasi, A., Sachdeva, M., and Bungau, S., Am. J. Transl. Res., 2022, vol. 14, no. 7, pp. 4391–4405.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Suh, H. and Lee, J.-E., Yonsei Med. J., 2002, vol. 43, no. 2, pp. 193–202. https://doi.org/10.3349/ymj.2002.43.2.193

  5. Anandagoda, N., Ezra, D.G., Cheema, U., Bailly, M., and Brown, R.A., J. Roy. Soc. Interface, 2012, vol. 9, no. 75, pp. 2680–2687. https://doi.org/10.1098/rsif.2012.0164

    Article  CAS  Google Scholar 

  6. O’Brien, W.J., Fan, P.L., Loeshe, W.J., Walker, M. ., and Apostolids, A., Dent. Res., 1978, vol. 57, nos. 9–10, pp. 910–914.

    Article  Google Scholar 

  7. Kolmas, J., Groszyk, E., and Kwiatkowska-Różycka, D., BioMed Res. Int., 2014, pp. 1–15. https://doi.org/10.1155/2014/178123

    Article  CAS  Google Scholar 

  8. Edmonds, M., Cardiovasc. Endocrinol. Metab., 2019, vol. 8, no. 1, pp. 39–46. https://doi.org/10.1097/XCE.0000000000000168

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hayden, M.R., Tyagi, S.C., Kolb, L., Sowers, J.R., and Khanna, R., Cardiovasc. Diabetol., 2005, pp. 1–22. https://doi.org/10.1186/1475-2840-4-4

    Article  CAS  Google Scholar 

  10. Laydi, F., Rahouadj, R., Cauchois, G., Stoltz, J-F., and de Isla, N., Biomed. Mater. Eng., 2013, vol. 23, no. 4, pp. 311–315. https://doi.org/10.3233/BME-130755

    Article  CAS  PubMed  Google Scholar 

  11. Patent RU 2214827, Publ. 2003.

  12. Burla, F., Dussi, S., Martinez-Torres, C., Tauber, J., van der Gucht, J., and Koenderink, G.H., PNAS, 2020, vol. 117, no. 15, pp. 8326–8334. https://doi.org/10.1073/pnas.1920062117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Salchert, K., Oswald, J., Streller, U., Grimmer, M., Herold, N., and Werner, C., J. Mater. Sci. Mater. Med., 2005, vol. 16, no. 6, pp. 581–585. https://doi.org/10.1007/s10856-005-0535-y

    Article  CAS  PubMed  Google Scholar 

  14. Kreger, S.T. and Voytik-Harbin, S.L., Matrix Biol., 2009, vol. 28, no. 6, pp. 336–346. https://doi.org/10.1016/j.matbio.2009.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nonogaki, T., Xu, S., Kugimiya, S., Sato, S., Miyata, I., and Yonese, M., Langmuir, 2000, vol. 16, no. 9, pp. 4272–4278. https://doi.org/10.1021/la990444c

    Article  CAS  Google Scholar 

  16. Knill, C.J., Kennedy, J.F., Latif, Y., and Ellwood, D., in Hyaluronan: Proc. Int. Meet., 2002, vol. 1, pp. 175–180.

    Article  CAS  Google Scholar 

  17. Bernanke, D.H. and Markwald, R.R., Anat. Rec., 1984, vol. 210, no. 1, pp. 25–31. https://doi.org/10.1002/ar.1092100105

    Article  CAS  PubMed  Google Scholar 

  18. Donati, A., Magnani, A., Bonechi, C., Barbucci, R., and Rossi, C., Biopolymers, 2001, vol. 59, no. 6, pp. 434–445. https://doi.org/10.1002/1097-0282(200111)59:6<434::AID-BIP1048>3.0.CO;2-4

    Article  CAS  PubMed  Google Scholar 

  19. Almond, A., DeAngelis, P.L., and Blundell, C.D., J. Molec. Biol., 2006, vol. 358, no. 5, pp. 1256–1269. https://doi.org/10.1016/j.jmb.2006.02.077

    Article  CAS  PubMed  Google Scholar 

  20. Průšová, A., Šmejkalová, D., Chytil, M., Velebný, V., and Kučerík, J., Carbohydr. Polym., 2010, vol. 82, no. 2, pp. 498–503. https://doi.org/10.1016/j.carbpol.2010.05.022

    Article  CAS  Google Scholar 

  21. Cowman, M.K., Schmidt, T.A., Raghavan, P., and Stecco, A., F1000Res., 2015, vol. 25, no. 4, pp. 622–632. https://doi.org/10.12688/f1000research.6885.1

    Article  Google Scholar 

  22. Gatej, I., Popa, M., and Rinauo, M., Biomacromolecules, 2015, vol. 6, no. 1, pp. 61–67. https://doi.org/10.1021/bm040050m

    Article  CAS  Google Scholar 

  23. Scott, J.E., Cummings, C., Brass, A., and Chen, Y., Biochem. J., 1991, vol. 274, pp. 699–705. https://doi.org/10.1042/bj2740699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Knepper, P.A., Covici, S., Fadel, J.R., Mayanil, C.S., and Ritch, R., J. Glaucoma, 1995, vol. 4, no. 3, pp. 194–199.

    Article  CAS  PubMed  Google Scholar 

  25. Cheng, P.T. and Pritzker, K.P., J. Rheumatol., 1983, vol. 10, no. 5, pp. 769–777.

    CAS  PubMed  Google Scholar 

  26. Cheng, P.T. and Pritzker, K.P., J. Rheumatol., 1981, vol. 8, no. 5, pp. 772–782.

    CAS  PubMed  Google Scholar 

  27. Thouverey, C., Bechko, G., Pikula, S., and Buchet, R., Osteoarth. Cartilage, 2009, vol. 17, pp. 64–72. https://doi.org/10.1016/j.joca.2008.05.020

    Article  CAS  Google Scholar 

  28. Chen, C.C. and Boskey, A.L., Calcif. Tissue Int., 1985, vol. 37, no. 4, pp. 395–400. https://doi.org/10.1007/BF02553709

    Article  CAS  PubMed  Google Scholar 

  29. Boskey, A.L. and Dick, B.L., Matrix, 1991, vol. 11, no. 6, pp. 442–446. https://doi.org/10.1016/S0934-8832(11)80198-8

    Article  CAS  PubMed  Google Scholar 

  30. Paschalakis, P., Vynios, D.H., Tsiganos, C.P., Dalas, E., Maniatis, C., and Koutsoukos, P.G., Biochim. Biophys. Acta, 1993, vol. 1158, no. 2, pp. 129–136. https://doi.org/10.1016/0304-4165(93)90006-T

    Article  CAS  PubMed  Google Scholar 

  31. Prabakaran, K., Balamurugan, A., and Rajeswari, S., Bull. Mater. Sci., 2005, vol. 28, no. 2, pp. 115–119. https://doi.org/10.1007/BF02704229

    Article  CAS  Google Scholar 

  32. Nosenko, T.N., Sitnikova, V.E., Strel’nikova, I.E., and Fokina, M.I., Praktikum po kolebatel’noi spektroskopii: Uchebnoe posobie (Practical Course of Vibrational Spectroscopy: Handbook), St. Petersburg: Univ. ITMO, 2021, pp. 126–130.

    Google Scholar 

  33. Ghanaeian, А. and Reza, S., J. Biomol. Struct. Dyn., 2020, vol. 20, pp. 1–10. https://doi.org/10.1080/07391102.2020.1753578

    Article  CAS  Google Scholar 

  34. Ghanaeian, А. and Reza, S., J. Mech. Behav. Biomed. Mater., 2018, vol. 86, pp. 105–112. https://doi.org/10.1016/j.jmbbm.2018.06.021

    Article  CAS  PubMed  Google Scholar 

  35. Hongo, C., Noguchi, K., Okuyama, K., Tanaka, Y., and Nishino, N., J. Biochem., 2005, vol. 138, no. 2, pp. 135–144. https://doi.org/10.1093/jb/mvi108

    Article  CAS  PubMed  Google Scholar 

  36. Okuyama, K., Hongo, C., Wu, G., Mizuno, K., Noguchi, K., Ebisuzaki, S., Tanaka, Y., Nishino, N., and Bachinger, H.P., Biopolymers, 2009, vol. 91, no. 5, pp. 361–372. https://doi.org/10.1002/bip.21138

    Article  CAS  PubMed  Google Scholar 

  37. Servaty, R., Schiller, J., Binder, H., and Arnold, K., Int. J. Biolog. Macromol., 2001, vol. 28, no. 2, pp. 121–127. https://doi.org/10.1016/s0141-8130(00)00161-6

    Article  CAS  Google Scholar 

  38. Anunziata, O.A., Maria, L., and Beltramone, M.R., J. Mater., 2009, vol. 2, no. 4, pp. 1508–1519. https://doi.org/10.3390/ma2041508

    Article  CAS  Google Scholar 

  39. Gibson, I.R. and Bonfield, W., J. Biomed. Mater. Res., 2002, vol. 59, no. 4, pp. 697–708. https://doi.org/10.1002/jbm.10044

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was performed using the equipment of the Lykov Institute of Heat and Mass Exchange, National Academy of Sciences of Belarus, and Institute of Cytology, Russian Academy of Sciences.

The authors are grateful to Cand. Sci. (Eng.) T.A. Kuznetsova and Head of Laboratory of Nanoprocesses and Technologies Dr. Sci. (Eng.) S.A. Chizhik for the assistance in performing atomic force microscopy and to Cand. Sci. (Biol.) L.V. Kukhareva and Cand. Sci. (Biol.) Yu.A. Nashchekina for the preparation of the collagen solution and gel.

Funding

The study was financially supported by the State Research Program “Chemical Processes, Reagents, and Technologies, Bioregulators, and Bioorganic Chemistry,” task 2.1.04.7, for the years 2021–2025 (Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus; Research Institute for Physicochemical Problems, Belarusian State University; Lykov Institute of Heat and Mass Exchange, National Academy of Sciences of Belarus), and by the Ministry of Science and Higher Education of the Russian Federation within the framework of government assignment no. FMFU-2021-0008 (Institute of Cytology, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Contributions

A.A. Gaidash: development of the methodology for preparing samples of tendons, collagen extracts, and gels and for studying them by IR spectroscopy, analysis of the data of scanning and atomic force microscopy, writing of the paper, and literature search; V.K. Krut’ko: participation in experiments on treatment of the samples with hyaluronic acid and determination of the phase composition; O.N. Musskaya: rheological study; O.A. Sycheva: thermal analysis; L.V. Kul’bitskaya: IR spectroscopy; G.B. Mel’nikova: atomic force microscopy; K.V. Skrotskaya: scanning electron microscopy; M.I. Blinova: experiments on preparation of collagen extracts and gels; A.I. Kulak: formulation of the research tasks and goal.

Corresponding author

Correspondence to A. A. Gaidash.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, Nos. 11–12, pp. 1424–1438, August, 2022 https://doi.org/10.31857/S004446182211007X

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaidash, A.A., Krut’ko, V.K., Musskaya, O.N. et al. Structure and Physicochemical Properties of Collagen Gels Treated with Hyaluronic Acid. Russ J Appl Chem 95, 1701–1714 (2022). https://doi.org/10.1134/S1070427222110039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222110039

Keywords:

Navigation