Skip to main content
Log in

Chemical and Biochemical Reactors for Controlled Synthesis of Organic and Inorganic Compounds

  • Reviews
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

State of the art and possibilities of improvement of chemical reactors and bioreactors for the synthesis of organic and inorganic chemicals are considered. Various approaches to intensification are discussed, both those based on equipment miniaturization and those based on the reduction of the diffusion resistance in flows in macroscale apparatuses. Taylor vortices arising in two-phase laminar flows favor the process intensification. In one-phase flows, favorable conditions are created owing to the concentration of the kinetic energy of the flow in a small volume (no more than 1 mL), which ensures high quality of micromixing and hence the stoichiometric ratio of the atoms in the product being synthesized. Modern microreactors allow rigorous control of the temperature and pH in the reaction zone. Because several such zones can be arranged in one apparatus, the use of microreactors is promising for the synthesis of composite materials. Macroscale reactors of the new type are characterized by increased coefficients of heat and mass exchange. The volume of a pulsation resonance apparatus can be completely sealed during the process, which is particularly valuable in operation with dangerously explosive and inflammable substance, and a flow-through pulsation apparatus can be a good alternative to standard implementation of polymerization processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

REFERENCES

  1. Ramshaw, C., Proc. 1st Int. Conf. on Process Intensification for Chemical Industry, London: BHR Group, 1995, pp. 1–2.

  2. Gorak, A. and Stankiewicz, A., Research Agenda for Process Intensification. https://inspire-eit.eu/wp-content/uploads/2018/01/DSD_Research_Agenda.pdf

  3. Stankiewicz, A. and Moulijn, J.A., Chem. Eng. Prog., 2000, vol. 96, no. 1, pp. 22–33.

    CAS  Google Scholar 

  4. Dautzenberg, F.M. and Mukherjee, M., Chem. Eng. Sci., 2001, vol. 56, pp. 251–267.

    Article  CAS  Google Scholar 

  5. Bauer, T., Schubert, M., Lange, R., and Abiev, R.Sh., Russ. J. Appl. Chem., 2006, vol. 79, no. 7, pp. 1047–1056. https://doi.org/10.1134/S107042720607019

    Article  Google Scholar 

  6. Taylor, G.I., J. Fluid Mech., 1961, vol. 10, pp. 161–165. https://doi.org/10.1017/S0022112061000159

    Article  Google Scholar 

  7. Abiev, R.Sh., Chem. Eng. Sci., 2022, vol. 247, ID 116930. https://doi.org/10.1016/j.ces.2021.116930

    Article  CAS  Google Scholar 

  8. Abiev, R.Sh., Theor. Found. Chem. Eng., 2009, vol. 43, pp. 298–306. https://doi.org/10.1134/S0040579509030099

    Article  CAS  Google Scholar 

  9. Abiev, R.Sh., Chem. Eng. Sci., 2022, vol. 250, ID 117380. https://doi.org/10.1016/j.ces.2021.117380

    Article  CAS  Google Scholar 

  10. Abiev, R.Sh., Butler, C., Lalanne, B., Cid, E., and Billet, A.-M., Chem. Eng. Sci., 2019, vol. 207, pp. 1331–1340. https://doi.org/10.1016/j.ces.2019.07.046

    Article  CAS  Google Scholar 

  11. Mei, M., Hébrard, G., Dietrich, N., and Loubière, K., Chem. Eng. Sci., 2020, vol. 222, ID 115717. https://doi.org/10.1016/j.ces.2020.115717

    Article  CAS  Google Scholar 

  12. Woo, M., Tischer, S., Deutschmann, O., and Wörner, M., Chem. Eng. Sci., 2021, vol. 230, ID 116132. https://doi.org/10.1016/j.ces.2020.116132

    Article  CAS  Google Scholar 

  13. Abiev, R.Sh., Pavlyukova, Y.N., Nesterova, O.M., Svetlov, S.D., and Ostrovskii, V.A., Chem. Eng. Res. Des., 2019, vol. 144, pp. 444–458. https://doi.org/10.1016/j.cherd.2019.01.033

    Article  CAS  Google Scholar 

  14. Popova, E.A., Abiev, R.Sh., Lappalainen, L.A., Svetlov, S.D., Andreeva, T.V., Trifonov, R.E., and Ostrovskii, V.A., Chem. Biochem. Eng. Quart., 2014, vol. 28, pp. 241–246.

    Article  CAS  Google Scholar 

  15. Klapötke, Th.M., Chemistry of High-Energy Materials, Berlin: Walter de Gruyter, 2011.

    Book  Google Scholar 

  16. Klapötke, Th.M., Sabaté, C.M., and Stierstorfer, J., New J. Chem., 2009, vol. 33, pp. 136–147. https://doi.org/10.1039/b812529e

    Article  CAS  Google Scholar 

  17. Bagal, L.I., Pevzner, M.S., Frolov, A.N., and Sheludyakova, N.I., Chem. Heterocycl. Compd., 1970, no. 6, pp. 240–244.

    Article  Google Scholar 

  18. Spear, R.J., Aust. J. Chem., 1984, vol. 37, pp. 2453–2468.

    Article  CAS  Google Scholar 

  19. Green Energetic Materials, Brinck, T., Ed., Wiley, 2014.

  20. Ostrovskii, V.A., Pevzner, M.S., Kofman, T.P., Shcherbinin, M.B., and Tselinskii, I.V., Targets in Heterocyclic Systems. Chemistry and Properties, Attanasi, O.A. and Spinelly, D., Eds., Ital. Soc. Chem., 1999.

    Google Scholar 

  21. Pavlyukova, Yu.N., Nesterova, O.M., Ilyushin, M.A., and Ostrovskii, V.A., Chem. Heterocycl. Compd., 2017, vol. 53, nos. 6/7, pp. 733–736. https://doi.org/10.1007/s10593-017-2118-5

    Article  CAS  Google Scholar 

  22. Zhao, C.-X., He, L., Qiao, S.Z., and Middelberg, A.P.J., Chem. Eng. Sci., 2011, vol. 66, pp. 1463–1479. https://doi.org/10.1016/j.ces.2010.08.039

    Article  CAS  Google Scholar 

  23. Nightingale, A.M. and deMello, J.C., Adv. Mater., 2013, vol. 25, no. 13, pp. 1813–1821. https://doi.org/10.1002/adma.201203252

    Article  CAS  PubMed  Google Scholar 

  24. Mbwahnche, R.C., Matyushkin, L.B., Ryzhov, O.A., Aleksandrova, O.A., and Moshnikov, V.A., Opt. Spectrosc., 2017, vol. 122, pp. 48–51.

  25. Luo, L., Yang, M., and Chen, G., Chem. Eng. Sci., 2022, vol. 25, ID 117479. https://doi.org/10.1016/j.ces.2022.117479

    Article  CAS  Google Scholar 

  26. Wu, H., Cheng, Y., Fan, Y., Lu, X., Li, L., Liu, B., Li, B., and Lu, S., Int. J. Hydrogen Energy, 2020, vol. 45, no. 55, pp. 30325–30340. https://doi.org/10.1016/j.ijhydene.2020.08.131

    Article  CAS  Google Scholar 

  27. Sanyal, U., Demirci, U.B., Jagirdar, B.R., and Miele, P., ChemSusChem, 2011, vol. 4, no. 12, pp. 1731–1739. https://doi.org/10.1002/cssc201100318

    Article  CAS  PubMed  Google Scholar 

  28. Liu, H., Vandu, C.O., and Krishna, R., Ind. Eng. Chem. Res., 2005, vol. 44, no. 14, pp. 4884–4897. https://doi.org/10.1021/ie049307n

    Article  CAS  Google Scholar 

  29. Falconi, C.J., Lehrenfeld, C., Marschall, H., Meyer, C., Abiev, R., Bothe, D., and Wörner, M., Phys. Fluids, 2016, vol. 28, no. 1, ID 012109. https://doi.org/10.1063/1.4939498

    Article  CAS  Google Scholar 

  30. Abiev, R.S. and Lavretsov, I.V., Theor. Found. Chem. Eng., 2011, vol. 45, pp. 235–247.

    Article  CAS  Google Scholar 

  31. Abiev, R.Sh., Chem. Eng. J. Adv., 2020, vol. 4, ID 100065. https://doi.org/10.1016/j.ceja.2020.100065

    Article  CAS  Google Scholar 

  32. Abiev, R.Sh. and Lavretsov, I.V., Chem. Eng. J., 2011, vols. 176–177, pp. 57–64. https://doi.org/10.1016/j.cej.2011.03.107

    Article  CAS  Google Scholar 

  33. Hessel, V., Löwe, H., and Schönfeld, F., Chem. Eng. Sci., 2005, vol. 60, pp. 2479–2501. https://doi.org/10.1016/j.ces.2004.11.033

    Article  CAS  Google Scholar 

  34. Mielke, E., Plouffe, P., Koushik, N., Eyholzer, M., Gottsponer, M., Kockmann, N., Macchi, A., and Roberge, D.M., React. Chem. Eng., 2017, vol. 2, pp. 763–775. https://doi.org/10.1039/c7re00085e

    Article  CAS  Google Scholar 

  35. Wu, K.-J., Nappo, V., and Kuhn, S., Ind. Eng. Chem. Res., 2015, vol. 54, no. 30, pp. 7554–7564. https://doi.org/10.1021/acs.iecr.5b01444

    Article  CAS  Google Scholar 

  36. Patent RU 2342990, Publ. 2009.

  37. Patent RU 2614283, Publ. 2017.

  38. Shevchenko, N., Svetlov, S., and Abiev, R., J. Flow Chem., 2021, vol. 11, pp. 751–762. https://doi.org/10.1007/s41981-021-00142-9

    Article  CAS  Google Scholar 

  39. Svetlov, S.D. and Abiev, R.Sh., Chem. Eng. Sci., 2021, vol. 235, ID 116493. https://doi.org/10.1016/j.ces.2021.116493

    Article  CAS  Google Scholar 

  40. Kawase, M., Suzuki, T., and Miura, K., Chem. Eng. Sci., 2007, vol. 62, pp. 4875–4879. https://doi.org/10.1016/j.ces.2007.02.032

    Article  CAS  Google Scholar 

  41. Marchisio, D.L., Barresi, A.A., and Garbero, M., AIChE J., 2002, vol. 48, no. 9, pp. 2039–2050. https://doi.org/10.1002/aic.690480917

    Article  CAS  Google Scholar 

  42. Marchisio, D.L., Rivautella, L., and Barresi, A.A., AIChE J., 2006, vol. 52, pp. 1877–1887. https://doi.org/10.1002/aic.10786

    Article  CAS  Google Scholar 

  43. Bałdyga, J. and Orciuch, W., Trans. Inst. Chem. Eng., 1997, vol. 75A, pp. 160–170.

    Article  Google Scholar 

  44. Schwarzer, H.-C. and Peukert, W., AIChE J., 2004, vol. 50, pp. 3234–3247. https://doi.org/10.1002/aic.10277

    Article  CAS  Google Scholar 

  45. Vacassy, R., Lemaître, J., Hofmann, H., and Gerlings, J.H., AIChE J., 2000, vol. 46, pp. 1241–1252.

    Article  CAS  Google Scholar 

  46. Patil, S., Kate, P.R., Deshpande, J.B., and Kulkarni, A.A., Chem. Eng. J., 2021, vol. 414, ID 128711. https://doi.org/10.1016/j.cej.2021.128711

    Article  CAS  Google Scholar 

  47. Rollett, A., Humphreys, F., Rohrer, G.S., and Hatherly, M., Recrystallization and Related Annealing Phenomena, Oxford, UK: Elsevier, 2004, 2nd ed.

    Google Scholar 

  48. Tanimu, A., Jaenicke, S., and Alhooshani, K., Chem. Eng. J., 2017, vol. 327, pp. 792–821. https://doi.org/10.1016/j.cej.2017.06.161

    Article  CAS  Google Scholar 

  49. Abiev, R.S., Almjasheva, O.V., Popkov, V.I., and Proskurina, O.V., Chem. Eng. Res. Des., 2022, vol. 178, pp. 73–94. https://doi.org/10.1016/j.cherd.2021.12.003

    Article  CAS  Google Scholar 

  50. Bałdyga, J. and Bourne, J.R., Encyclopedia of Fluid Mechanics, Cheremisinoff, N.P., Ed., Houston, TX: Gulf, 1986, vol. 1, p. 145.

    Google Scholar 

  51. Bałdyga, J. and Bourne, J.R., Chem. Eng. Sci., 1992, vol. 47, pp. 1839–1848.

    Article  Google Scholar 

  52. Bałdyga, J. and Bourne, J.R., Turbulent Mixing and Chemical Reactions, Chichester: Wiley, 1999.

    Google Scholar 

  53. Fournier, M.C., Falk, L., and Villermaux, J., Chem. Eng. Sci., 1996, vol. 22, pp. 5053–5064. https://doi.org/10.1016/0009-2509(96)00270-9

    Article  Google Scholar 

  54. Ghanem, A., Lemenand, T., Della Valle, D., and Peerhossaini, H., Chem. Eng. Res. Des., 2014, vol. 92, pp. 205–228. https://doi.org/10.1016/j.cherd.2013.07.013

    Article  CAS  Google Scholar 

  55. Bałdyga, J. and Bourne, J.R., Chem. Eng. J., 1989, vol. 42, pp. 83–92.

    Article  Google Scholar 

  56. Abiev, R.Sh. and Makusheva, I.V., Theor. Found. Chem. Eng., 2022, vol. 56, pp. 141–151. https://doi.org/10.1134/S0040579522020014

    Article  CAS  Google Scholar 

  57. Abiev, R.S. and Sirotkin, A.A., Theor. Found. Chem. Eng., 2022, vol. 56, pp. 9–22. https://doi.org/10.1134/S0040579522010018

    Article  CAS  Google Scholar 

  58. Falk, L. and Commenge, J.-M., Chem. Eng. Sci., 2010, vol. 65, pp. 405–411. https://doi.org/10.1016/j.ces.2009.05.045

    Article  CAS  Google Scholar 

  59. Patent RU 2625981, Publ. 2017.

  60. Patent RU 2748446, Publ. 2021.

  61. Patent RU 2686193, Publ. 2019.

  62. Patent RU 2736287, Publ. 2020.

  63. Patent RU 2741735, Publ. 2021.

  64. Patent RU 2744173, Publ. 2021.

  65. Patent RU 2746392, Publ. 2021.

  66. Patent RU 2748486, Publ. 2021.

  67. Fedorenko, N.Yu., Abiev, R.Sh., Kudryashova, Yu.S., Ugolkov, V.L., Khamova, T.V., Mjakin, S.V., Zdravkov, A.V., Kalinina, M.V., and Shilova, O.A., Ceram. Int., 2022, vol. 48, pp. 13006–13013. https://doi.org/10.1016/j.ceramint.2022.01.174

    Article  CAS  Google Scholar 

  68. Albadi, Y., Ivanova, M.S., Grunin, L.Y., Martinson, K.D., Chebanenko, M.I., Izotova, S.G., Nevedomskiy, V.N., Abiev, R.S., and Popkov, V.I., Inorganics, 2021, vol. 9, ID 39. https://doi.org/10.3390/inorganics9050039

    Article  CAS  Google Scholar 

  69. Abiev, R.Sh., Zdravkov, A.V., Kudryashova, Yu.S., Alexandrov, A.A., Kuznetsov, S.V., and Fedorov, P.P., Russ. J. Inorg. Chem., 2021, vol. 66, no. 7, pp. 1049–1054.

    Article  Google Scholar 

  70. Fedorov, P.P. and Osiko, V.V., Dokl. Phys., 2019, vol. 64, pp. 353–355. https://doi.org/10.1134/S1028335819090076

    Article  CAS  Google Scholar 

  71. Thoma, R.E., Phase Diagrams of Binary and Ternary Fluoride Systems, Advances in Molten Salt Chemistry, Braunstein, J., Mamantov, G., and Smith, G.P., Eds., New York: Plenum, 1975.

  72. Ludekens, W.L.W. and Welch, A.J.E., Acta Crystallogr., 1952, vol. 5, p. 841. https://doi.org/10.1107/S0365110X52002240

    Article  CAS  Google Scholar 

  73. Li, W., Huang, H., Mei, B., Wang, C., Liu, J., Wang, S., Jiang, D., and Su, L., Ceram. Int. B, 2020, vol. 46, pp. 19530–19536. https://doi.org/10.1016/j.ceramint.2020.05.003

    Article  CAS  Google Scholar 

  74. Liu, Z., Jia, M., Yi, G., Mei, B., Jing, Q., and Liu, P., J. Am. Ceram. Soc., 2019, vol. 102, no. 1, pp. 285–293. https://doi.org/10.1111/jace.15902

    Article  CAS  Google Scholar 

  75. Wan, Z., Li, W., Mei, B., Liu, Z., and Yang, Y., J. Luminescence, 2020, vol. 223, ID 117188. https://doi.org/10.1016/j.jlumin.2020.117188

    Article  CAS  Google Scholar 

  76. Yang, Y., Li, W., Mei, B., Song, J., Yi, G., Zhou, Z., and Liu, J., J. Luminescence, 2019, vol. 213, pp. 504–509. https://doi.org/10.1016/j.jlumin.2019.05.010

    Article  CAS  Google Scholar 

  77. Zhou, Z., Li, W., Song, J., Mei, B., Yi, G., and Yang, Y., J. Eur. Ceram. Soc., 2019, vol. 39, no. 7, pp. 2446–2452. https://doi.org/10.1016/j.jeurceramsoc.2019.02.033

    Article  CAS  Google Scholar 

  78. Barabash, V.M., Abiev, R.S., and Kulov, N.N., Theor. Found. Chem. Eng., 2018, vol. 52, pp. 473–487. https://doi.org/10.1134/S004057951804036X

    Article  CAS  Google Scholar 

  79. Abiev, R.Sh., Chem Eng. Process.: Process Intens., 2022, vol. 180, ID 108686. https://doi.org/10.1016/j.cep.2021.108686

    Article  CAS  Google Scholar 

  80. Abiev, R.Sh., Vdovets, M.Z., Romashchenkova, N.D., and Maslikov, A.V., Russ. J. Appl. Chem., 2019, vol. 92, pp. 1399−1409. https://doi.org/10.1134/S1070427219100100

    Article  CAS  Google Scholar 

  81. Vasilev, M.P. and Abiev, R.Sh., Chem. Eng. Res. Des., 2018, vol. 137, pp. 329–349. https://doi.org/10.1016/j.cherd.2018.07.029

    Article  CAS  Google Scholar 

  82. Abiev, R.S. and Galushko, A.S., J. Flow Chem., 2021, vol. 11, pp. 369–391. https://doi.org/10.1007/s41981-021-00177-y

    Article  CAS  Google Scholar 

  83. Patent RU 2262008, Publ. 2005.

  84. Abiev, R.S. and Kozlov, V.V., New Mater., Compd. Appl., 2018, vol. 2, no. 1, pp. 71–80.

    CAS  Google Scholar 

  85. Abiev, R.Sh., Ind. Processes Technol., 2023, vol. 3, no. 1 (8), pp. 69–93.

    Google Scholar 

  86. Höfken, M., Bischof, F., and Durst, F., Ind. Appl. Fluid Mech., 1991, vol. 132, no. 47, pp. 47–56.

    Google Scholar 

  87. Nouri, J.M. and Whitelaw, J., Can. J. Chem. Eng., 1994, vol. 72, no. 10, pp. 782–791.

    Article  CAS  Google Scholar 

  88. Höfken, M., Zähringer, K., and Bischof, F., Water Sci. Technol., 1994, vol. 29, pp. 149–156.

    Article  Google Scholar 

  89. Patent RU 2683078, Publ. 2019.

  90. Patent RU 2738083, Publ. 2020.

  91. Grigor’eva, A.N. and Abiev, R.Sh., Zoloto Tekhnol., 2020, vol. 3, pp. 112–116.

    Google Scholar 

  92. Patent RU 2379098, Publ. 2010.

  93. Abiev, R., Rev. Chem. Eng., 2021, vol. 37, no. 1, pp. 69–97. https://doi.org/10.1515/revce-2018-0040

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation, project no. 20-63-47016 (in the part concerning the synthesis of nanoparticles of inorganic materials).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sh. Abiev.

Ethics declarations

The author declares that he has no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, Nos. 11–12, pp. 1339–1364, August, 2022 https://doi.org/10.31857/S0044461822110019

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abiev, R.S. Chemical and Biochemical Reactors for Controlled Synthesis of Organic and Inorganic Compounds. Russ J Appl Chem 95, 1653–1676 (2022). https://doi.org/10.1134/S1070427222110015

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222110015

Keywords:

Navigation