Skip to main content
Log in

Removal of Arsenic from Waste Heat Boiler Dust of a Copper Plant by Solvent Extraction Using Undiluted Tributyl Phosphate

  • Various Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

In the present study, undiluted TBP was employed to separate arsenic from a typical leach liquor of a copper industry bearing 9.08 g/L As, 46.69 g/L Cu, 23.44 g/L Ni, 1.23 g/L Fe, 0.49 g/L Zn and 0.09 g/L Co by solvent extraction technique. The effect of different parameters such as extractant concentration, H2SO4 and HCl concentration and temperature on extraction of arsenic was examined. With increasing the concentration of sulfuric and hydrochloric acid in the leach liquor, the percentage extraction of arsenic was increased. However, with increasing the temperature, the percentage extraction decreased. The McCabe–Thiele plot indicated 4 counter current stages at A : O ratio of 1 : 4 for the quantitative extraction of arsenic. The loaded organic contained 2.26 g/L As and was stripped with water. The McCabe–Thiele plot for stripping showed 2 counter-current stages at A : O = 1 : 2 and the stripping efficacy was 99.3%. The thermodynamic parameters such as ∆H°, ∆G°, and ∆S° were calculated for arsenic extraction. The enthalpy change (∆H°) value was negative indicating the extraction processes was exothermic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Gebel, T., Toxicology, 2000, vol. 144, nos. 1–3, pp. 155–162. https://doi.org/10.1016/s0300-483x(99)00202-4

    Article  CAS  PubMed  Google Scholar 

  2. US. Department of the Interior, 2018. Final List of Critical Minerals. https://www.federalregister.gov/documents/2018/05/18/2018-10667/final-list-of-criticalminerals-2018

  3. Dietz, C., Sanz, J., Sanz, E., Munoz-Olivas, R., Camara, C., J. Chromatogr. A, 2007, vol. 1153, pp. 114–129. https://doi.org/10.1016/j.chroma.2006.11.064

    Article  CAS  PubMed  Google Scholar 

  4. Padhan, E., Sarangi, K., Subbaiah, T., Int. J. Miner. Process, 2014, vol. 126, pp. 55–61. https://doi.org/10.1016/j.minpro.2013.11.011

    Article  CAS  Google Scholar 

  5. Rout, P.C. and Sarangi, K., Sep. Purifi. Technol., 2014, vol. 122, pp. 270–277. https://doi.org/10.1016/j.seppur.2013.11.010

    Article  CAS  Google Scholar 

  6. Parhi, P.K., Padhan, E., Palai, A.K., Sarangi, K., Nathsarma, K.C., and Park, K.H., Desalination, 2011, vol. 267, pp. 201–208. https://doi.org/10.1016/j.desal.2010.09.026

    Article  CAS  Google Scholar 

  7. Mishra, R.K., Rout, P.C., Sarangi, K., Nathsarma, K.C., Hydrometallurgy, 2010, vol. 104, pp. 298–303. https://doi.org/10.1016/j.hydromet.2010.07.003

    Article  CAS  Google Scholar 

  8. Sarangi, K., Parhi, P.K., Padhan, E., Palai, A.K., Nathsarma, K.C., and Park, K.H., Sep. Purifi. Technol., 2007, vol. 55, pp. 44–49. https://doi.org/10.1016/j.seppur.2006.10.021

    Article  CAS  Google Scholar 

  9. De Schepper, A. and Van Peteghem, A., Treatment of Solutions Containing Impure Metals, US Patent 4061564, December 6, 1977.

  10. Dermirkiran, A. and Rice, N.M., Abstracts of Papers, Proceedings of the International Solvent Extraction Conference, ISEC 2002. SAIMM, Johannesburg, 2002, pp. 890–895. https://www.federalregister.gov/documents/2018/05/18/2018-10667/final-list-of-criticalminerals-2018

  11. Navarro, P., Alguacil, F.J., Can Metall. Quarter, 1996, vol. 35(2), pp. 133–141. https://doi.org/10.1016/0008-4433(95)00044-5

    Article  Google Scholar 

  12. Ballinas, M.L., San Miguel, E.R., Muños, M., and Gyves, J., Ind. Eng. Chem. Res., 2003, vol. 42, pp. 574–581. https/www.federalregister.gov/documents/2018/05/18/2018-10667/final-list-of-criticalminerals-2018

    Article  Google Scholar 

  13. Iberhan, L. and Wiśniewski, M., Hydrometallurgy, 2002, vol. 63, pp. 23–30. https://doi.org/10.1016/S0304-386X(01)00198-0

    Article  CAS  Google Scholar 

  14. Iberhan, L., J. Chem. Technol. Biotechnol., 2003, vol. 78, pp. 659–665. https://www.federalregister.gov/documents/2018/05/18/2018-10667/final-list-of-criticalminerals-2018

    Article  CAS  Google Scholar 

  15. Petrova, A.M., Theor. Found. Chem. Eng., 2019, vol. 53, no. 4, pp. 661–668. https://www.federalregister.gov/documents/2018/05/18/2018-10667/final-list-of-criticalminerals-2018

    Article  CAS  Google Scholar 

  16. Gupta, B. and Begum, Z., Sep. Purifi. Technol., 2008, vol. 63, pp. 77–85. https://www.federalregister.gov/documents/2018/05/18/2018-10667/final-list-of-criticalminerals-2018

    Article  CAS  Google Scholar 

  17. Zhao, Y. and Chen, J., Hydrometallurgy, 1996, vol. 42(3), pp. 313–324. https://doi.org/10.1016/0304-386X(95)00108-S

    Article  CAS  Google Scholar 

  18. Zhao, Y. and Chen, J., Hydrometallurgy, 1996, no. 42, pp. 325–335. https://doi.org/10.1016/0304-386X(95)00108-S

    Article  CAS  Google Scholar 

  19. Bogacki, M.B., Wigniewski, M., Szymanowski, W.J., J. Radioanal. Nucl. Chem., 1998, vol. 228, pp. 57–61. https://www.federalregister.gov/documents/2018/05/18/2018-10667/final-list-of-criticalminerals-2018

    Article  CAS  Google Scholar 

  20. Jantunen, N., Virolainen, S., Latostenma, P., Salminen, J., Haapalainen, M., and Sainio, T., Hydrometallurgy, 2019, vol. 187, pp. 101–112. https://doi.org/10.1016/j.hydromet.2019.05.008

    Article  CAS  Google Scholar 

  21. Szymanowski, J., Miner. Process. Extr. Metall. Rev., 1998, vol. 18, no. 3–4, pp. 389–418. https://doi.org/www.federalregister.gov/documents/2018/05/18/2018-10667/final-list-of-criticalminerals-2018

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to thank the Director, Institute of Minerals and Materials Technology, Bhubaneswar and HOD, Hydro & Electrometallurgy Department for their kind permission to publish this paper.

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niharbala Devi.

Ethics declarations

The authors declare that they do not have any conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarangi, K., Barik, G., Padhan, E. et al. Removal of Arsenic from Waste Heat Boiler Dust of a Copper Plant by Solvent Extraction Using Undiluted Tributyl Phosphate. Russ J Appl Chem 95, 1634–1640 (2022). https://doi.org/10.1134/S1070427222100159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222100159

Keywords:

Navigation