Skip to main content
Log in

Electrochemical Deposition of Sb2S3 Thin Films

  • Applied Electrochemistry and Metal Corrosion Protection
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The dependence of the composition of Sb2S3 thin semiconducting films electrochemically deposited from an aqueous electrolyte containing SbOCl and Na2SO3 on the conditions of galvanostatic electrolysis was studied. With an increase in the SbOCl concentration and electrolysis time, the antimony content of the films obtained increases, whereas with an increase in the electrolyte temperature, current density, and Na2SO3 concentration the antimony content of the thin films decreases. The optimum electrolyte composition and electrochemical deposition conditions for preparing Sb2S3 thin films of the composition close to the stoichiometry were found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Aliyev, А.Sh., Eminov, Sh.О., Sultanova, Т.Sh., Mejidzadeh, V.А., Kuliyev, D.А., Jalilova, H.D., and Tagiyev, D.B., Chem. Problems, 2016, vol. 14, no. 2, pp. 139–145.

    Google Scholar 

  2. Majidzade, V.A., Javadova, S.P., Aliyev, A.Sh., and Tagiyev, D.B., Russ. J. Аppl. Сhem., 2021, vol. 94, no. 1, pp. 38–42. https://doi.org/10.1134/S1070427221010067

    Article  CAS  Google Scholar 

  3. Majidzade, V.A., Aliyev, A.Sh., Guliyev, P.H., and Babanly, D.M., J. Electrochem. Sci. Eng., 2020, vol. 10, no. 1, pp. 1–9. https://doi.org/10.5599/jese.676

    Article  CAS  Google Scholar 

  4. Virt, I.S., Rudyj, I.O., Kurilo, I.V., Lopatynskyi, I.Ye., Linnik, L.F., Tetyorkin, V.V., Potera, P., and Luka, G., Semiconductors, 2013, vol. 47, no. 7, pp. 1003–1007. https://doi.org/10.1134/S1063782613070233

    Article  CAS  Google Scholar 

  5. Zeynalova, A.O., Majidzade, V.A., Javadova, S.P., and Aliyev, A.Sh., Chem. Problems, 2021, vol. 19, no. 4, pp. 262–271. https://doi.org/10.5599/jese.676

    Article  CAS  Google Scholar 

  6. Simeon, O.O., Mishark, N.N., and Chukwuemeka, A., Global J. Eng. Sci. Res., 2018, vol. 10, no. 5, pp. 112–119. https://doi.org/10.5281/zenodo.1463829

    Article  Google Scholar 

  7. González-Lúa, R., Escorcia-García, J., Pérez-Martínez, D., Nair, M.T., Campos, J., and Nair, P.K., ECS J. Solid State Sci. Technol., 2015, vol. 3, no. 4, pp. 9–16. https://doi.org/10.1149/2.0111503jss

    Article  CAS  Google Scholar 

  8. Choi, Y., Lee, Y.H., Im, S.H., Noh, J.H., Mandal, T.N., Yang, W.S., and Seok, S.I., Adv. Energy Mater., 2014, vol. 7, no. 4, ID 1301680. https://doi.org/10.1002/aenm.201301680

    Article  CAS  Google Scholar 

  9. Ali, N., Ahmed, R., Haq, B., Shaari, A., Hussain, R., and Goumri-Said, S., Solar Energy, 2015, vol. 113, pp. 25–33. https://doi.org/10.1016/j.solener.2014.12.021

    Article  CAS  Google Scholar 

  10. Wan, L., Ma, C., Hu, K., Zhou, R., Mao, X., Pan, S., Wong, L.H., and Xu, J., J. Alloys Compd., 2016, vol. 680, pp. 182–190. https://doi.org/10.1016/j.jallcom.2016.04.193

    Article  CAS  Google Scholar 

  11. Sun, P., Yao, F., Ban, X., Huang, N., and Sun, X., Electrochim. Acta, 2015, vol. 174, pp.127–132. https://doi.org/10.1016/j.electacta.2015.05.138

    Article  Google Scholar 

  12. Choi, Y.C., Yeom, E.J., Ahn, T.K., and Seok, S.I., Angew. Chem., 2015, vol. 54, no. 13, pp. 4005–4009. https://doi.org/10.1002/anie.201411329

    Article  CAS  Google Scholar 

  13. Bansal, N., Mahony, F.T., Lutz, T., and Haque, S.A., Adv. Energy Mater., 2013, vol. 3, no. 8, pp. 986–990. https://doi.org/10.1002/aenm.201300017

    Article  CAS  Google Scholar 

  14. Bao, H., Cui, X., Li, C.M., Song, Q., Lu, Z., and Guo, J., J. Phys. Chem. C, 2007, vol. 111, no. 45, pp. 17131–17135. https://doi.org/10.1021/jp076828q

    Article  CAS  Google Scholar 

  15. Ţigaˇu, N., Gheorghieş, C., Rusu, G.I., and Condurache-Bota, S., J. Non-Cryst. Solids, 2005, vol. 351, nos. 12–13, pp. 987–992. https://doi.org/10.1016/j.jnoncrysol.2004.12.014

    Article  CAS  Google Scholar 

  16. Boughalmi, R., Boukhachem, A., Kahlaoui, M., Maghraoui, H., and Amlouk, M., Mater. Sci. Semiconductor Process., 2014, vol. 26, pp. 593–602. https://doi.org/10.1016/j.mssp.2014.05.059

    Article  CAS  Google Scholar 

  17. Kriisa, M., Krunks, M., Oja Acik, I., Kärber, E., and Mikli, V., Mater. Sci. Semiconductor Process., 2015, vol. 40, pp. 867–872. https://doi.org/10.1016/j.mssp.2015.07.049

    Article  CAS  Google Scholar 

  18. Moon, S.-J., Itzhaik, Y., Yum, J.-H., Zakeeruddin, S.M., Hodes, G., and Grätzel, M., J. Phys. Chem. Lett., 2010, vol. 10, no. 1, pp. 1524–1527. https://doi.org/10.1021/jz100308q

    Article  CAS  Google Scholar 

  19. Choi, Y.C., Lee, D.U., Noh, J.H., Kim, E.K., and Seok, S.I., Adv. Funct. Mater., 2014, vol. 24, no. 23, pp. 3587–3592. https://doi.org/10.1002/adfm.201304238

    Article  CAS  Google Scholar 

  20. Validžić, I.L., Mitrić, M., Abazović, N.D., Jokić, B.M., Milošević, A.S., Popović, Z.S., and Vukajlović, F.R., Semiconductor Sci. Technol., 2014, vol. 29, no. 3, ID 035007. https://doi.org/10.5599/jese.676

    Article  CAS  Google Scholar 

  21. Murtaza, G., Akhtar, M., Azad Malik, M., O’Brie, P., and Revaprasadu, N., Mater. Sci. Semiconductor Process., 2015, vol. 40, pp. 643–649. https://doi.org/10.1016/j.mssp.2015.07.038

    Article  CAS  Google Scholar 

  22. Gadakh, S.R. and Bhosale, C.H., Mater. Chem. Phys., 2002, vol. 78, pp. 367–371. https://doi.org/10.1016/S0254-0584(02)00101-3

    Article  Google Scholar 

  23. Krishnan, B., Arato, A., Cardenas, E., Das Roy, T.K., and Castillo, G.A., Appl. Surf. Sci., 2008, vol. 254, pp. 3200–3206. https://doi.org/10.1016/j.apsusc.2007.10.098

    Article  CAS  Google Scholar 

  24. Kulkarni, A.N., Rajendra Prasad, M.B., Ingle Ravi, V., Pathan, H.M., Eldesoky, G.E., Naushad Mu, and Patil Rajendra, S., Opt. Mater., 2015, vol. 46, pp. 536–541. https://doi.org/10.1016/j.optmat.2015.04.066

    Article  CAS  Google Scholar 

  25. Messina, S., Nair, M.T.S., and Nair, P.K., Thin Solid Films, 2009, vol. 517, no. 7, pp. 2503–2507. https://doi.org/10.1016/j.tsf.2008.11.060

    Article  CAS  Google Scholar 

  26. Escorcia-García, J., Becerra, D., Nair, M.T.S., and Nair, P.K., Thin Solid Films, 2014, vol. 569, pp. 28–34. https://doi.org/10.1016/j.tsf.2014.08.024

    Article  CAS  Google Scholar 

  27. Aousgi, F., Dimassi, W., Bessais, B., and Kanzari, M., Appl. Surf. Sci., 2015, vol. 350, pp. 19–24. https://doi.org/10.1016/j.apsusc.2015.01.126

    Article  CAS  Google Scholar 

  28. Subramania, S., Chithralekha, P., and Pathinettam Padiyan, D., Phys. B, 2010, vol. 405, pp. 925–931. https://doi.org/10.1016/j.physb.2009.10.016

    Article  CAS  Google Scholar 

  29. Chen, J.-H., Chiu, S.-K., Luo, J.-D., Huang, S.-Y., Ting, H.-A., Hofmann, M., Hsieh, Y.-P., and Ting, C.-C., Sci. Rep., 2020, vol. 10, article 14873. https://doi.org/10.1038/s41598-020-70879-1

    Article  PubMed  PubMed Central  Google Scholar 

  30. Abd-El-Rahman, K.F. and Darwish, A.A.A., Curr. Appl. Phys., 2011, vol. 11, no. 6, pp. 1265–1268. https://doi.org/10.1016/J.CAP.2010.12.006

    Article  Google Scholar 

  31. Majidzade, V.A., Guliyev, P.H., Aliyev, A.Sh., Elrouby, M., and Tagiyev, D.B., J. Mol. Struct., 2017, vol. 1136, pp. 7–13. https://doi.org/10.1016/j.molstruc.2017.01.082

    Article  CAS  Google Scholar 

  32. Majidzade, V.A., Azerb. Chem. J., 2018, no. 1, pp. 83–87.

  33. Park, C.-M., Hwa, Y., Sung, N.-E., and Sohn, H.-J., J. Mater. Chem., 2010, vol. 20, pp. 1097–1102. https://doi.org/10.1039/B918220A

    Article  CAS  Google Scholar 

  34. Chen, L., Zhu, W., Han, Q., Yang, X., Lu, L., and Wang, X., Mater. Lett., 2009, vol. 63, pp. 1258–1261. https://doi.org/10.1016/j.matlet.2009.02.055

    Article  CAS  Google Scholar 

  35. Ma, J., Duan, X., Lian, J., Kim, T., Peng, P., Liu, X., Liu, Z., Li, H., and Zheng, W., Chem. Eur. J., 2010, vol. 44, no. 16, pp. 13210–13217. https://doi.org/10.1002/chem.201000962

    Article  CAS  Google Scholar 

Download references

Funding

The study was financially supported by the National Academy of Sciences of Azerbaijan within the framework of research programs on priority directions in 2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Majidzade.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majidzade, V.A., Javadova, S.P., Jafarova, S.F. et al. Electrochemical Deposition of Sb2S3 Thin Films. Russ J Appl Chem 95, 1627–1633 (2022). https://doi.org/10.1134/S1070427222100147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222100147

Keywords:

Navigation