Skip to main content
Log in

Highly Hydrophobic Polyurethane Coatings Modified with an Organosilicon Block Copolymer and Amino-Functionalized Nano/Microdispersed SiO2–NH2

  • Macromolecular Compounds and Polymeric Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The joint effect exerted on the hydrophobic properties of two-component polyurethane coatings by SiO2–NH2 particles prepared from tetraethoxysilane and 3-aminopropyltriethoxysilane using the sol–gel procedure and by an organosilicon block copolymer was studied. The structure and size distribution of particles were determined by Fourier IR spectroscopy, differential thermal analysis, and laser light scattering. Introduction of SiO2–NH2 particles leads to an increase in the roughness and change in topography of the polyurethane coating surface, which was proved by atomic force microscopy and scanning electron microscopy. Variation of the content of the organosilicon block copolymer influences the SiO2–NH2 particle-size distribution in the composite, the surface topography, and wetting of the coatings and allows preparation of highly hydrophobic polyurethane coatings with the contact angle and hysteresis of 166.2° and 11.9°, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Somarathna, H.M.C.C., Raman, S.N., Mohotti, D., Mutalib, A.A., and Badri, K.H., Constr. Build. Mater., 2018, vol. 190, pp. 995–1014. https://doi.org/10.1016/j.conbuildmat.2018.09.166

    Article  CAS  Google Scholar 

  2. Fihri, A., Bovero, E., Al-Shahrani, A., Al-Ghamdi, A., and Alabedi, G., Colloids Surf. A : Physicochem. Eng. Asp., 2017, vol. 520, pp. 378–390. https://doi.org/10.1016/j.colsurfa.2016.12.057

    Article  CAS  Google Scholar 

  3. Luo, G., Jin, Z., Dong, Y., Huang, J., Zhang, R., Wang, J., and Zhang, L., Surf. Eng., 2016, vol. 34, no. 2, pp. 139–145. https://doi.org/10.1080/02670844.2016.1236068

    Article  CAS  Google Scholar 

  4. Guo, J., Wang, C., Yu, H., and Li, X., Prog. Org. Coat., 2020, vol. 146, ID 105710. https://doi.org/10.1016/j.porgcoat.2020.105710

    Article  CAS  Google Scholar 

  5. Ke, C., Li, Z., Zhang, C., Wu, X., Zhu, Z., and Jiang, Y., Coatings, 2021, vol. 11, no. 2, ID 174. https://doi.org/10.3390/coatings11020174

    Article  CAS  Google Scholar 

  6. Voznyakovskii, A.P., Kudoyarova, V.K., Kudoyarov, M.F., and Patrova, M.Y., Phys. Solid State, 2017, vol. 59, no. 8, pp. 1656–1661. https://doi.org/10.1134/S1063783417080327

    Article  CAS  Google Scholar 

  7. Shi, S., Yang, J., Liang, S., Li, M., Gan, Q., Xiao, K., and Hu, J., Sci. Total Environ., 2018, vol. 628, pp. 499–508. https://doi.org/10.1016/j.scitotenv.2018.02.091

    Article  CAS  PubMed  Google Scholar 

  8. Pavlenko, V.I., Cherkashina, N.I., and Demkina, L.N., IOP Conf. Ser. : Mater. Sci. Eng., 2018, vol. 327, no. 5, ID 052026. https://doi.org/10.1088/1757-899X/327/5/052026

    Article  Google Scholar 

  9. Couble, J., Buniazet, Z., Loridant, S., and Bianchi, D., Langmuir, 2020, vol. 36, no. 45, pp. 13371–13382. https://doi.org/10.1021/acs.langmuir.0c01716

    Article  CAS  PubMed  Google Scholar 

  10. Erofeev, D.A. and Mashlyakovskii, L.N., Izv. Sankt-Peterb. Gos. Tekhnol. Inst. (Tekh. Univ.), 2022, no. 61, pp. 42–50. https://doi.org/10.36807/1998-9849-2022-61-87-44-50

    Article  Google Scholar 

  11. Sui, T., Ding, M., Ji, C., Yan, S., Wei, J., Wang, A., Zhao, F., and Fei, J., Ceram. Int., 2018, vol. 44, no. 15, pp. 18438–18443. https://doi.org/10.1016/j.ceramint.2018.07.061

    Article  CAS  Google Scholar 

  12. Giraldo, L.J., Giraldo, M.A., Llanos, S., Maya, G., Zabala, R.D., Nassar, N.N., and Cortés, F.B., J. Petrol. Sci. Eng., 2017, vol. 159, pp. 841–852. https://doi.org/10.1016/j.petrol.2017.10.009

    Article  CAS  Google Scholar 

  13. Jalali Dil, E., Arjmand, M., Otero Navas, I., Sundararaj, U., and Favis, B.D., Macromolecules, 2020, vol. 53, no. 22, pp. 10267–10277. https://doi.org/10.1021/acs.macromol.0c01525

    Article  CAS  Google Scholar 

  14. Darani, M.K., Bastani, S., Ghahari, M., Kardar, P., and Mohajerani, E., Prog. Org. Coat., 2018, vol. 122, pp. 263–269. https://doi.org/10.1016/j.porgcoat.2018.01.022

    Article  CAS  Google Scholar 

  15. Erofeev, D.A., Mashlyakovskii, L.N., Khomko, E.V., and Litosov, G.E., Russ. J. Appl. Chem., 2021, vol. 94, no. 5, pp. 647–655. https://doi.org/10.1134/107042722105013X

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Erofeev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 10, pp. 1251–1262, October, 2022 https://doi.org/10.31857/S0044461822100048

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erofeev, D.A., Mashlyakovskii, L.N. Highly Hydrophobic Polyurethane Coatings Modified with an Organosilicon Block Copolymer and Amino-Functionalized Nano/Microdispersed SiO2–NH2. Russ J Appl Chem 95, 1539–1549 (2022). https://doi.org/10.1134/S1070427222100044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222100044

Keywords:

Navigation