Skip to main content
Log in

Antimicrobial Popymers: Homopolymers and Copolymers of Cefotiam-Binding Acrylamide

  • Various Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The object of this article was to synthesize a special type of functional polymer material with antimicrobial activity. In this paper, polymer antibacterial materials were synthesized in two steps: (1) acrylamide–cefotiam was synthesized via acrylate chloride reaction with cefotiam at 0–5°C for 8 h;(2) The poly(acrylamide–cefotiam) and poly(acrylamide-co-acrylamide–cefotiam) were synthesized via free radical polymerization method in 60°C using water as the solvent and ammonium persulfate as the initiator. The chemical structure and composition of the acrylamide–cefotiam and obtained polymers were investigated by Fourier transform infrared (FTIR) spectrum and Nuclear magnetic resonance (NMR) spectroscopy. The number-average molecular weight (Mn) of poly(acrylamide–cefotiam) and poly(acrylamide-co-acrylamide–cefotiam) were determined by gel permeation chromatography (GPC). In order to investigate the effect of the obtained polymers bonding of cefotiam on their antimicrobial properties, the contrast and colony counting were used to investigate the antibacterial properties of polymers against ATCC 8739 E. coli. The polymer bonded to cefotiam has 100% antibacterial properties against ATCC 8739 E. coli. Experimental results provide a new method for preparing antimicrobial polymer materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Scheme
Fig. 3.
Scheme
Fig. 4.
Scheme
Fig. 5.

REFERENCES

  1. Doyle, F.P. and Nayler, J.H.C., Advances in Drug Research, Hasper, N.Y. and Simmonds, A.B., London, 1964.

    Google Scholar 

  2. Smith, H. and Marshall, A.C., Nature, 1971, vol. 232, pp. 45–46.

    Article  CAS  PubMed  Google Scholar 

  3. Frere, I.M., Leyh-Bouille, M., Ghuysen, I.M., and Pernine, H.R., Eur. J. Biochem., 1974, vol. 50, pp. 203–214.

    Article  CAS  PubMed  Google Scholar 

  4. Strominger, J.L. and Tipper, D.J., Amer. J. Med., 1965, vol. 39, pp. 708–712.

    Article  CAS  PubMed  Google Scholar 

  5. Strominger, J.L., Izaki, K., Matsuhasi, M., and Tipper, D., Fed. Proc., 1967, vol. 26(1), pp. 9–22.

    CAS  PubMed  Google Scholar 

  6. Kawabata, N. and Nishiguchi, M., Appl. Environ. Microbiol., 1988, vol. 54(10), pp. 2532–2535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kawabata, N., Inoue, T., and Tomita, H., Epidemiol. Infect., 1992, vol. 108, pp. 123–134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cen, L., Neoh, K.G., and Kang, E.T., Langmuir, 2003, vol. 19, pp. 10295–10303.

    Article  CAS  Google Scholar 

  9. Kenawy, E.R., Abdel-Hay, F.I., Tamer, T.M., Ibrahim, E.M., Elghit, A., and Mihy, M.S., Polymer Bulletin, 2020, vol. 77(4), pp. 1631–1647.

    Article  CAS  Google Scholar 

  10. Kenawy, E.R., Al-Deyab, S.S., Shaker, N.O., El-Sadek, B.M., Khattab, A.H.B., Journal of Applied Polymer Science, 2009, vol. 113(2), pp. 818-820.

    Article  Google Scholar 

  11. Kenawy, E.R., Abd El-Raheem, R. El-Shanshoury, Nihal Omar, S., El-Sadek, B.M., Khattab, A.H.B., and Ismail, B., Journal of Applied Polymer Science, 2011, vol. 120(5), pp. 2734–2742.

    Article  CAS  Google Scholar 

  12. Yang, H. and Lopina, S.T., J. Biomater. Sci. Polym. Ed., 2003, vol. 14(10), pp. 1043–1056.

    Article  CAS  PubMed  Google Scholar 

  13. Smith, H. and Marshall, A.C., Nature, 1971, vol. 232, pp. 45–46.

    Article  CAS  PubMed  Google Scholar 

  14. Panarin, E.F. and Solovskij, M.V., Journal of Controlled Release, 1989, vol. 10, pp. 119–129.

    Article  CAS  Google Scholar 

  15. Sobczak, M., Nałecz-Jawecki, G., Kołodziejski, W.L., Goś, P., and Zółtowska, K., International Journal of Pharmaceutics, 2010, vol. 402, pp. 37–43.

    Article  CAS  PubMed  Google Scholar 

  16. Turos, E., Shim, J.Y., Wang, Y., Greenhalgh, K., Reddy, G.S.K., Dickey, S., and Lim, D.V., Bioorganic & Medicinal Chemistry Letters, 2007, vol. 17, pp. 53–56.

    Article  CAS  Google Scholar 

  17. Milovic, N.M., Wang, J., Lewis, K., and Klibanov, A.M., Biotechnology and Bioengineering, 2005, vol. 90(6), pp. 715–722.

    Article  CAS  PubMed  Google Scholar 

  18. Du, J., Bandara, H., Du, P., Huang, H., Hoang, K., Nguyen, D., Vasudha, S., and Smyth, D.C., Molecular Pharmaceutics, 2015, vol. 12, pp. 1544–1553.

    Article  CAS  PubMed  Google Scholar 

  19. Schmidt, M., Bast, L.K., Lanfer, F., Richter, L., Hennes, E., Seymen, R., Krumm, C., and Tiller, J.C., Bioconjugate Chem., 2017, vol. 28, pp. 2440–2451.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baixin Li.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B. Antimicrobial Popymers: Homopolymers and Copolymers of Cefotiam-Binding Acrylamide. Russ J Appl Chem 95, 1489–1496 (2022). https://doi.org/10.1134/S1070427222090269

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222090269

Keywords:

Navigation