Skip to main content
Log in

N-Substituted 2-Sulfanylacetamide Prunus Armeniaca: Synthesis, Characterization, and Adsorption Studies for As(III) Remediation

  • Various Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Aromatic amino acid or primary aliphatic acid available on prunus armeniaca seed coat (PASC) powder is modified (MPASC) using thioglycolic acid and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) in the form of N-substituted 2-sulfanylacetamide derivative. Infrared (FTIR), scanning electron microscopy, EDX, and XRD techniques are used for characterization of PASC and MPASC. Synthesized material is identified by the change in peak position and deformation of N–H bending vibration of primary amines peak. Peak at 1601 cm−1 due to N–H bending vibration is deformed at1656 cm–1 due to change of the primary amine into amide by thioglycolic acid. Both PASC and MPASC are then utilized for removal of As(III) form water. Adsorption experiments were conducted at different values of adsorbent dose, contact time and pH values in order to study their influence on the uptake of arsenic by the PASC and MPASC adsorbents. The Langmuir maximum adsorption capacity for PASC and MPASC were found to be 125 and 142.85 mg/g, respectively. Sulfhydryl groups on MPASC indicate high affinity for As(III) ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Bangaraiah, P. and Kumar, A., International Journal of Recent Technology and Engineering (IJRTE), 2019, vol. 8[4], pp. 2277–3878.

    Google Scholar 

  2. Abeer, N., Khan, S.A., Muhammad, S., et al., Environmental Technology & Innovation, 2020, vol. 20, ID 101171.

    Article  CAS  Google Scholar 

  3. Sorg, T.J., Chen, A.S., and Wang, L., Water Research, 2014, vol. 48, pp. 156–169.

    Article  CAS  PubMed  Google Scholar 

  4. Sogaard, E., Chemistry of Advanced Environmental Purification Processes of Water: Fundamentals and Applications, US: Elsevier, 2014.

    Google Scholar 

  5. Hua, J., Journal of Environmental Chemical Engineering, 2018, vol. 6(1), pp. 156–168.

    Article  CAS  Google Scholar 

  6. Singh, N.B., Nagpal, G., Agrawal, S., et al., Environmental Technology & Innovation, 2018, vol. 11, pp. 187–240.

    Article  Google Scholar 

  7. Singh, R., Singh, S., Parihar, P., Singh, V.P., and Prasad, S.M., Ecotoxicology and Environmental Safety, 2015, vol. 112, pp. 247–270.

    Article  CAS  PubMed  Google Scholar 

  8. Huq, M.E., Fahad, S., Shao, Z., Sarven, M.S., Al-Huqail, A.A., Siddiqui, M.H., Habibur Rahman, M., Khan, I.A., Alam, M., Saeed, M., Rauf, A., Basir, A., Jamal, Y., and Khan, S.U., Journal of Environmental Management, 2019, vol. 242, pp. 199–209.

    Article  CAS  PubMed  Google Scholar 

  9. Mohan, D. and Pittman Jr., C.U., Journal of Hazardous Materials, 2007, vol. 142, pp. 1–53. https://doi.org/10.1016/j.jhazmat.2007.01.006

    Article  CAS  PubMed  Google Scholar 

  10. Shakoor, M.B., Niazi, N.K., Bibi, I., Murtaza, G., Kunhikrishnan, A., Seshadri, B., Shahid, M., Ali, S., Bolan, N.S., Ok, Y.S., Abid, M., and Ali, F., Journal Critical Reviews in Environmental Science and Technology, 2016, vol. 46(5), pp. 467–499.

    Article  CAS  Google Scholar 

  11. Shakoor, M.B., Niazi, N.K., Bibi, I., Shahid, M., Saqib, Z.A., Nawaz, M.F., Shaheen, S.M., Wang, H., Daniel, C.W., Bundschuh, T.J., Ok, Y.S., and Rinklebe, J., Environment International, 2019, vol. 123, pp. 567–579.

    Article  CAS  PubMed  Google Scholar 

  12. Raj, V., Jain, A., and Chaudhary, J., Journal of Pharmacy Research, 2012, vol. 5(8), pp. 3964–3966.

    CAS  Google Scholar 

  13. Rai, I., Bachheti, R.K., Saini, C.K., Joshi, A., and Satyan, R.S., Oriental Pharmacy and Experimental Medicine, 2015, vol. 16(1), pp. 1–15.

    Article  Google Scholar 

  14. Corbett, D., Kohan, N., Machado, G., Jing, C., Nagardeolekar, A., and Bujanovic, B., Energies, 2015, vol. 8(9), pp. 9640–9654.

    Article  CAS  Google Scholar 

  15. Sharma, S., Satpathy, G., and Gupta, R.K., Journal of Pharmacognosy and Phytochemistry, 2014, vol. 3(3), pp. 23–28.

    CAS  Google Scholar 

  16. Erdogan-Orhan, I. and Kartal, M., Food Research International, 2011, vol. 44(5), pp. 1238–1243.

    Article  CAS  Google Scholar 

  17. Nikic, J., Tubic, A., Watson, M., Maletic, S., Solic, M., Majkic, T., and Agbaba, J., Water, 2019, vol. 11(12), p. 2520

    Article  CAS  Google Scholar 

  18. Zhang, J., Ding, T., Zhang, Z., Xu, L., and Zhang, C., PLOS ONE, 2015, vol. 10(4), pp. 1–18.

    Google Scholar 

  19. Shen, Y., Jiang, N., Liu, S., Zheng, C., Wang, X., Huang, T., Guo, Y., and Bai, R., Journal of Environmental Chemical Engineering, 2018, vol. 6(4), pp. 5420–5433.

    Article  CAS  Google Scholar 

  20. Papaleo, RM., Hallen, A., Sundqvist, B.U.R., Farenzena, L., Livi, R.P., de Araujo, M.A., and Johnson, R.E., Phys. Rev. B, 1996, vol. 5, pp. 2303–2313.

    Article  Google Scholar 

  21. Ouellette, R.J. and Rawn, D., Organic Chemistry Structure, Mechanism, and Synthesis, 1st ed., San Diego: Elsevier, 2014.

    Google Scholar 

  22. Ghosh, S.K., Advanced General Organic Chemistry – A Modernapproach. UV–Visible and IR Spectroscopy, Kolkata: New Central Book Agency, 2006.

    Google Scholar 

  23. Gogoi, B., Borah, N., Baishya, A., et al., Ecological Indicators, 2021, vol. 132, ID 108262, https://doi.org/10.1016/j.ecolind.2021.108262

    Article  CAS  Google Scholar 

  24. Isokoski, K , Poteet, C.A., and Linnartz, H., Astronomy & Astrophysics, 2013, vol. 555, no. A85, pp. 1–6.

    Article  Google Scholar 

  25. Kumar, R., Chawla, J., and Kaur, I., Journal of Water and Health, 2015, vol. 13(1), pp. 18–33.

    Article  PubMed  Google Scholar 

  26. Mustapha, S., Shuaib, D.T., Ndamitso, M.M., Etsuyankpa, M.B., Sumaila, A., Mohammed, U.M., and Nasirudeen, M.B., Applied Water Science, 2019, vol. 9(6), ID 142. https://doi.org/10.1007/s13201-019-1021-x

    Article  CAS  Google Scholar 

  27. Mandal, S., Sahu, M.K., and Patel, R.K., Water Resources and Industry, 2013, vol. 4, pp. 51–67

    Article  Google Scholar 

  28. Lata, S., Singh, P.K., and Samadder, S.R., International Journal of Environmental Science and Technology, 2015, vol. 12, pp. 1461–1478.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by management of Manav Rachna International Institute of Research and Studies (MRIIRS) Faridabad, Haryana, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti Chawla.

Ethics declarations

The authors declare no conflict of interests requiring disclosure in this article.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayyar, M., Chawla, J. & Kumar, R. N-Substituted 2-Sulfanylacetamide Prunus Armeniaca: Synthesis, Characterization, and Adsorption Studies for As(III) Remediation. Russ J Appl Chem 95, 1467–1480 (2022). https://doi.org/10.1134/S1070427222090233

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222090233

Keywords:

Navigation