Skip to main content
Log in

Hierarchical VAPO-5 Catalysts Prepared from Different Vanadium Sources in Fluoride Medium and Their Performance in Toluene Oxidation

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Hierarchical VAPO-5 molecular sieves were prepared with different vanadium resources in the absence/presence of fluorine and characterized by XRD, SEM, N2 adsorption-desorption, and NH3-TPD. The catalytic performances of hierarchical VAPO-5 molecular sieves were evaluated using toluene oxidation as the probe reaction and the corresponding mechanism was further proposed. The sample D-AFI-2(F) synthesized in a fluorine system with NH4VO3 as metal sources show better catalytic performance than other samples in toluene oxidation, which is ascribed to the hierarchically porous structure and more acidic sites. The optimized condition of toluene oxidation was attained at the reaction temperature of 60°C, the reaction time of 5 h, the molar ratio of H2O2 to toluene 2 : 1, the mass ratio of acetonitrile to toluene 6 : 1, and the mass ratio of catalyst to toluene 10%. In this case, the toluene conversion was 21.0%, and the selectivity of benzaldehyde, benzyl alcohol, and cresol was 43.3, 11.4, and 26.2%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Scheme

REFERENCES

  1. Pang, C., Xiong, J., Li, G., and Hu, C., J. Catal., 2018, vol. 366, pp. 37–49. https://doi.org/10.1016/j.jcat.2018.07.038

    Article  CAS  Google Scholar 

  2. Rezaei, M., Chermahini, A.N., and Dabbagh, H.A., J. Environ. Chem. Eng., 2017, vol. 5, no. 4, pp. 3529–3539. https://doi.org/10.1016/j.jece.2017.07.019

    Article  CAS  Google Scholar 

  3. Yuan, B., Zhang, B., Wang, Z., Lu, S., Li, J., Liu, Y., and Li, C., Chin. J. Catal., 2017, vol. 38, no. 3, pp. 440–446. https://doi.org/10.1016/s1872-2067(17)62757-8

    Article  CAS  Google Scholar 

  4. Liao, S., Cheng, G., He, B., and Yu, L., J. Guangdong U. Technol., 2017, vol. 34, no. 5, pp. 96–102. https://doi.org/10.12052/gdutxb.170068

    Article  Google Scholar 

  5. Peng, X., Lin, M., Zhu, B., Xia, C., Luo, Y., and Shu, X., Pet. Process. petrochemicals 2019, vol. 50, no. 6, pp. 33–39.

    Google Scholar 

  6. Li, G., Wang, G., Gao, Y., Song, W., Zhang, X., and Dong, Y., Fine Chem., 2011, vol. 28, no. 1, pp. 85–92. https://doi.org/10.13550/j.jxhg.2011.01.009

    Article  CAS  Google Scholar 

  7. Sakurai, Y., Suzaki, T., Ikenaga, N.-o., and Suzuki, T., Appl. Cata. A, 2000, vol. 192, no. 2, pp. 281–288. https://doi.org/10.1016/S0926-860X(99)00398-1

    Article  CAS  Google Scholar 

  8. Phan, A., Czaja, A.U., Gandara, F., Knobler, C.B., and Yaghi, O.M., Inorg. Chem., 2011, vol. 50, no. 16, pp. 7388–7390. https://doi.org/10.1021/ic201396m

    Article  CAS  PubMed  Google Scholar 

  9. Reddy, J.S. and Sayari, A., J. Chem. Soc. Chem. Comm., 1995, vol. 21, pp. 2231–2232. https://doi.org/10.1039/c39950002231

    Article  Google Scholar 

  10. Suchorski, Y., Rihko-Struckmann, L., Klose, F., Ye, Y., Alandjiyska, M., Sundmacher, K., and Weiss, H., Applied Surface Science, 2005, vol. 249, no. 4, pp. 231–237. https://doi.org/10.1016/j.apsusc.2004.11.083

    Article  CAS  Google Scholar 

  11. Chen, Y., Chinese Journal of Chemical Education, 2017, vol. 38, no. 18, pp. 1–5. https://doi.org/10.13884/j.1003-3807hxjy.2016090015

    Article  Google Scholar 

  12. Mei, G. and Ying, H., Stud. Trace Elem. Health, 2004, vol. 21, no. 2, pp. 57–59. https://doi.org/10.3969/j.issn.1005-5320.2004.02.029

    Article  Google Scholar 

  13. Yang, W., Sun, W., Zhao, S., and Yin, X., Micropor. Mesopor. Mater., 2016, vol. 219, pp. 87–92. https://doi.org/10.1016/j.micromeso.2015.06.036

    Article  CAS  Google Scholar 

  14. Campelo, J., Luna, D., Luque, R., Marinas, J., Romero, A., Calvino, J., and Rodriguezluque, M., J. Catal., 2005, vol. 230, no. 2, pp. 327–338. https://doi.org/10.1016/j.jcat.2004.12.004

    Article  CAS  Google Scholar 

  15. Ren, Y. and Mi, Z., J. Mol. Catal.(China), 2005, vol. 19, no. 1, pp. 12–16. https://doi.org/10.3969/j.issn.1001-3555.2005.01.003

    Article  CAS  Google Scholar 

  16. Wang, Y., Yao, M., Jiang, H., Li, X., Ji, J., and Liu, X., J. Chem. Eng. Chin. Uni., 2020, vol. 34, no. 3, pp. 756–762. https://doi.org/10.3969/j.issn.1003-9015.2020.03.026

    Article  CAS  Google Scholar 

  17. Danilina, N., Krumeich, F., and van Bokhoven, J. A., J. Catal., 2010, vol. 272, no. 1, pp. 37–43. https://doi.org/10.1016/j.jcat.2010.03.014

    Article  CAS  Google Scholar 

  18. Venkatathri, N., Indian J. Chem., 2004, vol. 43A, pp. 2325–2328. http://nopr.niscair.res.in/handle/123456789/20447

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foundation of China (21706017), a Project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Shao.

Ethics declarations

The authors declare that there is no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Ma, Y. & Shao, H. Hierarchical VAPO-5 Catalysts Prepared from Different Vanadium Sources in Fluoride Medium and Their Performance in Toluene Oxidation. Russ J Appl Chem 95, 1438–1447 (2022). https://doi.org/10.1134/S1070427222090208

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222090208

Keywords:

Navigation