Skip to main content
Log in

Electrochemical Micromachining of Hastelloy Using Cu–NaBr Nanoparticles Mixed Electrolyte

  • Applied Electrochemistry and Metal Corrosion Protection
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Electrochemical micromachining (ECMM) is mostly used for producing micro holes, micro slots, and micro channels. In this research work, copper nanoparticles were mixed with sodium bromide electrolyte for machining Hastelloy C276. The aim of this work is to find the influence of nanoparticles mixed electrolytes on the machining performance when machining voltage, electrolytic concentration, and amount of nanoparticles will improve the MRR, overcut feature, and the surface roughness of the micro holes. Machining performance was evaluated on the basis of MRR, radial overcut and surface roughness. Experimental results were correlated through the use of Taguchi-data envelopment analysis ranking (DEAR) based multicriteria optimisation method in order to find optimised parameter setting level. Based on the experimental results, nanoparticles mixed electrolytes were found playing a vital role in ECMM with increase in MRR and reduction in overcut and surface roughness at the optimized parameter setting level at machining voltage of 7 V, electrolyte concentration of 5 g/L and nanopowder suspension of 5 g/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Huang, S.F. and Liu, Y., Materials and Manufacturing Processes, 2014, vol. 29, nos. 11-12, pp. 1483–1487. https://doi.org/10.1080/10426914.2014.930897

    Article  CAS  Google Scholar 

  2. Kunar, S. and Bhattacharyya, B., Materials and Manufacturing Processes, 2019, vol. 34, no. 5, pp. 487–493. https://doi.org/10.1080/10426914.2018.1532582

    Article  CAS  Google Scholar 

  3. Sarangapani, Palani, Materials and Manufacturing Processes, 2020, vol. 35, no. 16, pp. 1860–1869. https://doi.org/10.1080/10426914.2020.1813888

    Article  CAS  Google Scholar 

  4. Rathod, V., Doloi, B., and Bhattacharyya, B., Materials and Manufacturing Processes, 2014, vol. 29, no. 3, pp. 305–313. https://doi.org/10.1080/10426914.2013.864407

    Article  CAS  Google Scholar 

  5. Dar-Yuan, Chang, Ping-Chen, Shen., Jung-Chou, Hung, Shuo-Jen, Lee, and Hai-Ping, Tsui, Materials and Manufacturing Processes, 2011, vol. 26, no. 12, pp. 1451–1458. https://doi.org/10.1080/10426914.2011.551905

    Article  CAS  Google Scholar 

  6. Mouliprasanth, B., and Hariharan, P., Materials and Manufacturing Processes, 2021, vol. 36, no. 1, pp. 39–47. https://doi.org/10.1080/10426914.2020.1813892

    Article  CAS  Google Scholar 

  7. Rajkeerthi, E., Hariharan, P., and Pradeep, N., Materials and Manufacturing Processes, 2021, vol. 36, no. 4, pp. 488–500. https://doi.org/10.1080/10426914.2020.1843672

    Article  CAS  Google Scholar 

  8. Soundarrajan, M., and Thanigaivelan, R., Materials and Manufacturing Processes, 2020, vol. 35, no. 7, pp. 775–782. https://doi.org/10.1080/10426914.2020.1740252

    Article  CAS  Google Scholar 

  9. Leo Kumar, S.P., Jerald, J., Kumanan, S., and Prabakaran, R., Materials and Manufacturing Processes, 2014, vol. 29, no.s 11, 12, pp. 1291–1337. https://doi.org/10.1080/10426914.2014.952037

    Article  CAS  Google Scholar 

  10. Shuangqing, Qian, Feng, Ji., Ningsong, Qu, and Hansong, Li., Materials and Manufacturing Processes, 2014, vol. 29, nos. 11, 12, pp. 1488–1493. https://doi.org/10.1080/10426914.2014.930950

    Article  CAS  Google Scholar 

  11. Abhinav, Kumar and Manas, Das, Materials and Manufacturing Processes, 2021, vol. 36, no. 13, pp. 1489–1500. https://doi.org/10.1080/10426914.2021.1905837

    Article  CAS  Google Scholar 

  12. Deepak, J. and Hariharan, P., Materials and Manufacturing Processes, 2022. https://doi.org/10.1080/10426914.2022.2065002

    Article  Google Scholar 

  13. Hai-Ping, Tsui, Jung-Chou, Hung, Kun-Ling, Wu, Jyun-Cin, You, and Biing-Hwa, Yan, Materials and Manufacturing Processes, 2011, vol. 26, , no. 5, pp. 740–745. https://doi.org/10.1080/10426910903536816

    Article  CAS  Google Scholar 

  14. Shaofu, Huang, Qiuye, Ma, Chao, Liu, Xianchun, Shi, and Changsong, Wang, Materials and Manufacturing Processes, 2022. https://doi.org/10.1080/10426914.2022.2065006

    Article  Google Scholar 

  15. Mishra, K., Sarkar, B.R., and Bhattacharyya, B., Materials and Manufacturing Processes, 2019, vol. 34, no. 7, pp. 807–813. https://doi.org/10.1080/10426914.2019.1594277

    Article  CAS  Google Scholar 

  16. Mehrabi, F., Farahnakian, M., Elhami, S., and Razfar, M.R., Journal of Materials Processing Technology, 2018, pp. 665-672.

    Article  Google Scholar 

  17. Malapati, M. and Bhattacharyya, B., Materials and Manufacturing Processes, 2011, vol. 26, no. 8, pp. 1019–1027. https://doi.org/10.1080/10426914.2010.525575

    Article  CAS  Google Scholar 

  18. Ahn, S.H., Ryu, S.H., Choi, D.K., and Chu, C.N., Precision Engineering, 2004, vol. 28, pp. 129–134.

    Article  Google Scholar 

  19. Maniraj, S. and Thanigaivelan, R., Materials and Manufacturing Processes, 2019, vol. 34, no. 13, pp. 1494–1501. https://doi.org/10.1080/10426914.2019.1655153

    Article  CAS  Google Scholar 

  20. Saxena, K.K., Qian, J., and Reynaerts, D., Journal of Machine Tools and Manufacture, 2018, vol. 127, pp. 28–56.

    Article  Google Scholar 

  21. Patel, J.B., Feng, Z., Villanueva, P.P., and Hung, W.N.P., Procedia Manufacturing, 2017, vol. 10, pp. 662–673.

    Article  Google Scholar 

  22. Paul, L. and Jose, I., Materials Today Proceedings, 2018, vol. 5, pp. 11875–11881.

    Article  Google Scholar 

  23. Chavoshi, S.Z., Goel, S., and Morantz, P., Materials and Design, 2017, vol. 127, pp. 37–53.

    Article  Google Scholar 

  24. Paul, B.K., Sahu, S.K., Jadam, T., Patta, S., Debabrate, Dhupal., and SibaSanka, Mahapatra, Materials Today Proceedings, 2018, vol. 5, pp. 17618–17626.

    Article  CAS  Google Scholar 

  25. Wenqiang, Duan., Xuesong, Mei., Zhengjie, Fan., Jichang, Li., and Yifei, Zhang., Optik., 2020, vol. 202, p. 163577. https://doi.org/10.1016/j.ijleo.2019.163577

    Article  CAS  Google Scholar 

  26. Aixi, Sun., Yubo, Chang., and Hongjun, Liu., Optik, 2019, vol. 181, pp. 92–98. https://doi.org/10.1016/j.ijleo.2018.11.156

    Article  CAS  Google Scholar 

  27. Udhayakumar, Gobikrishnan, Periyagoundar, Suresh, and Paramasivam, Kumaravel, Materials Today: Proceedings, 2020. https://doi.org/10.1016/j.matpr.2020.07.173

    Article  Google Scholar 

  28. Yi, XuJihong, Chen, Baoyang, and Jiang Jun, Ni, Journal of Materials Processing Technology, 2018, vol. 257, pp. 141–147. https://doi.org/10.1016/j.jmatprotec.2018.02.023

    Article  CAS  Google Scholar 

  29. Xiaoming, Kang and Weidong, Tang, Journal of Materials Processing Technology, 2018, vol. 255, pp. 656–664. https://doi.org/10.1016/j.jmatprotec.2018.01.014

    Article  CAS  Google Scholar 

  30. Xiangming, Zhu, Yong, Liu, Jianhua, Zhang, Kan, Wang, and Huanghai, Kong, Journal of Advanced Research, 2020, vol. 23, pp. 151–161. https://doi.org/10.1016/j.jare.2020.02.010

    Article  CAS  Google Scholar 

  31. Kai, Egashira, Akio, Hayashi, Yu, Hirai, Keishi, Yamaguchi, and Minoru, Ota, Precision Engineering, 2018, vol. 54, pp. 338–343. https://doi.org/10.1016/j.precisioneng.2018.07.002

    Article  Google Scholar 

  32. Liu, Guodong, Li, Yong, Kong, Quancun, and Tong, Hao, CIRP, 2016, vol. 42, pp. 412–417.

    Article  Google Scholar 

  33. Minghuan, Wan, Yaobin, Zhang, Zhiwei, He, and Wei, Peng, JMPT, 2016, vol. 229, pp. 475–483.

    Google Scholar 

  34. Yong, L. and Ruiqin, H., Abstracts of Papers, The Seventeenth CIRP Conference on Electro Physical and Chemical Machining, CIRP, 2013, vol. 6, pp. 395–400.

  35. Malapati, Manoj and Kumar, Reddy, International Journal of Mechanical Engineering and Applications, 2013, vol. 1(4), pp. 78–86.

    Article  Google Scholar 

  36. Mithu, M.A.H., Fantoni, G., and Ciampi, J., International Journal of Advanced Manufacturing Technology, 2014, vol. 70, pp. 1303–1312.

    Article  Google Scholar 

  37. Thanigaivelan, R., Arunachalam, R.M., and Natarajan, N., Abstracts of Papers, 5th International and 26th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) December 12th–14th, 2014, IIT Guwahati, Assam, India.

  38. Qu, N.S., Hu, Y., Zhu, D., and Xu, Z.Y., Materials and Manufacturing Processes, 2014, vol. 29, no. 5, pp. 572–578. https://doi.org/10.1080/10426914.2014.892974

    Article  CAS  Google Scholar 

Download references

Funding

There was no funding for the research.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed equally to the outcome of this work.

Corresponding author

Correspondence to R. Gobinath.

Ethics declarations

Authors declare that there are no potential conflicts of interest directly and indirectly relevant to the content of this work submitted for publication.

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gobinath, R., Hariharan, P. & Prasanth, B.M. Electrochemical Micromachining of Hastelloy Using Cu–NaBr Nanoparticles Mixed Electrolyte. Russ J Appl Chem 95, 1427–1437 (2022). https://doi.org/10.1134/S1070427222090191

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222090191

Keywords:

Navigation