Skip to main content
Log in

An Investigation of the Effect of CuMoB Nanocatalysts on Efficient Hydrogen Production

  • Hydrogen Technologies
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

In this study, the Cu–Mo–B catalyst in nanostructure was successfully synthesized with the chemical reduction method of sodium borohydride (NaBH4). The categorization of the attained Cu–Mo–B nano-catalyst was examined with XRD, BET, SEM, and EDS analytical methods. As a result of the ammonium borane hydrolysis of this attained catalyst, the most convenient Mo/Co ratio, NaOH impact, the impact of different catalyst amounts, and the impact of different ammonium borane concentrations on ammonium boron hydride hydrolysis were examined. In addition, hydrolysis was examined at different temperatures, and the degree and activation energy of the reaction were determined. At 333 K with the ammonium borane (AB) hydrolysis of Cu–Mo–B nanoparticles, the maximum hydrogen production rate and activation energy were found to be 4075 mL min−1gcat−1 and 21.37 kJ mol–1, respectively. In this context, Cu–Mo–B catalyst can be used in practical fuel cells since it is obtained economically and easily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. İzgi, M.S., Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2016, vol. 38, pp. 2590–2597.

    Article  Google Scholar 

  2. Zhang, J., Fisher, T.S., Gore, J.P., Hazra, D. and Ramachandran, P.V., International Journal of Hydrogen Energy, 2006, vol. 31, pp. 2292–2298.

    Article  CAS  Google Scholar 

  3. Rakap, M. and Özkar, S., International Journal of Hydrogen Energy, 2010, vol. 35, pp. 3341–3346.

    Article  CAS  Google Scholar 

  4. Ma, M., Yang, L., Ouyang, L., Shao, H. and Zhu, M., Energy, 2019, vol. 167, pp. 1205–1211.

    Article  CAS  Google Scholar 

  5. Schlapbach, L. and Züttel, A., Materials for Sustainable Energy: a Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (World Scientific), 2011, pp. 265–270.

    Google Scholar 

  6. İzgi, M.S., Baytar, O., Şahin, Ö., and Kazıcı, H.Ç., International Journal of Hydrogen Energy, 2020, vol. 45, pp. 34857–34866.

    Article  Google Scholar 

  7. Schlesinger, H.I., Brown, H.C., Finholt, A.E., Gilbreath, J.R., Hoekstra, H.R., and Hyde, E.K., Journal of the American Chemical Society, 1953, vol. 75, pp. 215–219.

    Article  CAS  Google Scholar 

  8. Hua, D., Hanxi, Y., Xinping, A., and Chuansin, C., International Journal of Hydrogen Energy 2003, vol. 28, pp. 1095–1100.

    Article  Google Scholar 

  9. Şahin, Ö., Kılınç, D. and Saka, C., Journal of the Energy Institute, 2016, vol. 89, pp. 617–626.

    Article  Google Scholar 

  10. Pornea, A.M., Abebe, M.W. and Kim, H., Chemical Physics, 2019, vol. 516, pp. 152–159.

    Article  CAS  Google Scholar 

  11. Park, J-H., Shakkthivel, P., Kim, H-J., Han, M-K., Jang, J-H., Kim, Y-R., Kim, H-S. and Shul, Y-G., International Journal of Hydrogen Energy, 2008, vol. 33, pp. 1845–1852.

    Article  CAS  Google Scholar 

  12. Liang, Y., Dai, H-B., Ma, L-P., Wang, P. and Cheng, H-M., International Journal of Hydrogen Energy, 2010, vol. 35, pp. 3023–3028.

    Article  CAS  Google Scholar 

  13. Krishnan, P., Yang, T-H., Lee, W-Y., and Kim, C-S., Journal of Power Sources, 2005, vol. 143, pp. 17–23.

    Article  CAS  Google Scholar 

  14. Yin, S-F., Zhang, Q-H., Xu, B-Q., and Zhu, W-X., Journal of Catalysis, 2004, vol. 224, pp. 384–396.

    Article  CAS  Google Scholar 

  15. Patel, N., Patton, B., Zanchetta, C., Fernandes, R., Guella, G., Kale, A., and Miotello, A., International Journal of Hydrogen Energy, 2008, vol. 33, pp. 287–292.

    Article  CAS  Google Scholar 

  16. Xu, D., Dai, P., Liu, X., Cao, C., and Guo, Q., Journal of Power Sources, 2008, vol. 182, pp. 616–20.

    Article  CAS  Google Scholar 

  17. Huang, Y., Wang, Y., Zhao, R., Shen, P.K., and Wei, Z., International Journal of Hydrogen Energy, 2008, vol. 33, pp. 7110–7115.

    Article  CAS  Google Scholar 

  18. Netskina, O.V., Kochubey, D.I., Prosvirin, I.P., Malykhin, S.E., Komova, O.V., Kanazhevskiy, V.V., Chukalkin, Y.G., Bobrovskii, V.I., Kellerman, D.G., and Ishchenko, A.V., Molecular Catalysis, 2017, vol. 441, pp. 100–108.

    Article  CAS  Google Scholar 

  19. Li, F., Li, Q., and Kim, H., Chemical Engineering Journal, 2012, vol. 210, pp. 316–424.

    Article  CAS  Google Scholar 

  20. Shen, X., Wang, Q., Wu, Q., Guo, S., Zhang, Z., Sun, Z., Liu, B., Wang, Z., Zhao, B., and Ding, W., Energy, 2015, vol. 90, pp. 464–474.

    Article  CAS  Google Scholar 

  21. Fernandes, R., Patel, N., and Miotello, A., Applied Catalysis B: Environmental, 2009, vol. 92, pp. 68–74.

    Article  CAS  Google Scholar 

  22. Kim, D-R., Cho, K-W., Choi, Y-I., and Park, C-J., InternationalJjournal of Hydrogen Energy, 2009, vol. 34, pp. 2622–2630.

    Article  CAS  Google Scholar 

  23. Kazici, H.Ç., Yildiz, F., İzgi, M.S., Ulaş, B., and Kivrak, H., International Journal of Hydrogen Energy, 2019, vol. 44, pp. 10561–10572.

    Article  Google Scholar 

  24. Izgi, M.S., Onat, E., Çelik, Kazici, H., and Şahin, Ö., Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019, pp. 1–14.

    Article  Google Scholar 

  25. Ding, X-L., Yuan, X., Jia, C., and Ma, Z-F., InternationalJjournal of Hydrogen Energy, 2010, vol. 35, pp. 11077–11084.

    Article  CAS  Google Scholar 

  26. Deonikar, V.G., Rathod, P.V., Pornea, A.M., Puguan, J.M.C., Park, K., and Kim, H., Journal of Industrial and Engineering Chemistry, 2020, vol. 86, pp. 167–177.

    Article  CAS  Google Scholar 

  27. Patel, N., Fernandes, R., and Miotello, A., Journal of Catalysis, 2010, vol. 271, pp. 315–24.

    Article  CAS  Google Scholar 

  28. Jeong, S.U., Kim, R.K., Cho, E., Kim, H-J., Nam, S-W., Oh, I-H., Hong, S-A., and Kim, S.H., Journal of Power Sources, 2005, vol. 144, pp. 129–134.

    Article  CAS  Google Scholar 

  29. İzgi, M.S., Şahin, Ö., and Saka, C., International Journal of Hydrogen Energy, 2016, vol. 41, pp. 1600–8.

    Article  Google Scholar 

  30. Figen, A.K., International Journal of Hydrogen Energy, 2013, vol. 38, pp. 9186–9197.

    Article  Google Scholar 

  31. Ekinci, A., Cengiz, E., Kuncan, M., and Şahin, Ö., International Journal of Hydrogen Energy, 2020, vol. 45, pp. 34749–34760.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to acknowledge the Siirt University for their support under the grant number of 2019-SİÜFEN-004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sevilay Demirci.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demirci, S., İzgi, M.S., Beştaş, H. et al. An Investigation of the Effect of CuMoB Nanocatalysts on Efficient Hydrogen Production. Russ J Appl Chem 95, 1418–1426 (2022). https://doi.org/10.1134/S107042722209018X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042722209018X

Keywords:

Navigation