Skip to main content
Log in

Kinetics and Performance Study of Continuous Isothermal CeO2-Based Thermochemical Cycling for CO Production

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

CeO2 has been shown as a prominent oxygen carrier for two-step solar thermochemical (STC) CO production owing to its thermal stability and rapid reaction kinetics. However, the current two-step CeO2-based STC system suffers from a large temperature swing, leading to large heat loss as well as inconsecutive operation. To better the above metrics, the isothermal continuous STC CO production based on CeO2 is researched within our tubular reactor. The produced CO concentration is found to increase gradually at the first hour and then remain about 550 ppm for more than 8 h. The obtained amount of CO is about 14.4 mL g–1h –1, much larger than those reported before. The effects of temperature, flow rate and partial pressure on CO2 conversion ratio (χCO2) and solar-to-fuel energy efficiency (ηsolar-to-fuel) are also studied, underscoring the advantage of continuous operation and importance of avoiding excessive CO2 input. In addition, with the correction of experiment temperature, our calculated ηsolar-to-fuel is about 1.85%, an evident improvement compared to previous isothermal systems. Moreover, the non-integer CO2-splitting kinetic characteristics as well as its explicit equation are revealed, providing significant references for CO production regulation and solar reactor design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

REFERENCES

  1. Zheng, Y., Zhang, W., Li, Y., and Chen, J., Nano Energy, 2017, vol. 40, pp. 512–539. https://doi.org/10.1016/j.nanoen.2017.08.049

    Article  CAS  Google Scholar 

  2. Saade, E., Bingham, C., Clough, D.E., and Weimer, A.W., Chem. Eng. J., 2012, vol. 213, pp. 272–285. https://doi.org/10.1016/j.cej.2012.09.117

    Article  CAS  Google Scholar 

  3. Smestad, G.P. and Steinfeld, A., Ind. and Chem. Res., 2012, vol. 51, no. 37, pp. 11828–11840. https://doi.org/10.1021/ie3007962

    Article  CAS  Google Scholar 

  4. Ma, T., Wang, L., Chang, C., Fu, M., and Li, X., Renew. Energy, 2019, vol. 143, pp. 915–921. https://doi.org/10.1016/j.renene.2019.05.047

    Article  CAS  Google Scholar 

  5. Nakamura, T., Sol. Energy, 1977, vol. 19, no. 5, pp. 467–475. https://doi.org/10.1016/0038-092X(77)90102-5

    Article  CAS  Google Scholar 

  6. Kong, H., Hao, Y., and Jin, H., Appl. Energy, 2018, vol. 228, pp. 301–308. https://doi.org/10.1016/j.apenergy.2018.05.099

    Article  CAS  Google Scholar 

  7. Ermanoski, I., Miller, J.E., and Allendorf, M.D., Phys. Chem. Chem. Phys., 2014, vol. 16, no. 18, pp. 8418–8427. https://doi.org/10.1039/c4cp00978a

    Article  CAS  PubMed  Google Scholar 

  8. Carrillo, R.J. and Scheffe, J.R., Sol. Energy, 2017, vol. 156, pp. 3–20.

    Article  CAS  Google Scholar 

  9. Farooqui, A. E., Pica, A. M., Marocco, P., Ferrero, D., Lanzini, A., Fiorilli, S., Llorca, J., and Santarelli, M., Chem. Eng. J., 2018, vol. 346, pp. 171–181. https://doi.org/10.1016/j.cej.2018.04.041

    Article  CAS  Google Scholar 

  10. Steinfeld, A., Mater. Today, 2014, vol. 17, no. 7, pp. 341–348. https://doi.org/10.1016/j.mattod.2014.04.025

    Article  CAS  Google Scholar 

  11. Abanades, S. and Villafan-Vidales, H.I., Chem. Eng. J., 2011, vol. 175, pp. 368–375. https://doi.org/10.1016/j.cej.2011.09.124

    Article  CAS  Google Scholar 

  12. Huang, X., Yuan, Y., Zhang, H.Y., Shuai, Y., Li, B.X., and Tan, H.P., Energy Source, Part A, 2017, vol. 39, no. 3, pp. 257–263. https://doi.org/10.1080/15567036.2013.878769

    Article  CAS  Google Scholar 

  13. Alxneit, I., Sol. Energy, 2008, vol. 82, no. 11, pp. 959–964. https://doi.org/10.1016/j.solener.2008.05.009

    Article  CAS  Google Scholar 

  14. Kubicek, M., Bork, A.H., and Rupp, J.L.M., J. Mater. Chem. A, 2017, vol. 5, no. 24, pp. 11983–12000. https://doi.org/10.1039/c7ta00987a

    Article  CAS  Google Scholar 

  15. Chuayboon, S., Abanades, S., and Rodat, S., Chem. Eng. J., 2019, vol. 356, pp. 756–770. https://doi.org/10.1016/j.cej.2018.09.072

    Article  Google Scholar 

  16. Siegel, N.P., Miller, J.E., Ermanoski, I., Diver, R.B., and Stechel, E.B., Ind. and Chem. Res., 2013, vol. 52, no. 9, pp. 3276–3286. https://doi.org/10.1021/ie400193q

    Article  CAS  Google Scholar 

  17. Marxer, D., Furler, P., Takacs, M., and Steinfeld, A., Energy Environ. Sci., 2017, vol. 10, no. 5, pp. 1142–1149. https://doi.org/10.1039/c6ee03776c

    Article  CAS  Google Scholar 

  18. Al-Shankiti, I., Ehrhart, B.D., and Weimer, A.W., Sol. Energy, 2017, vol. 156, pp. 21–29. https://doi.org/10.1016/j.solener.2017.05.028

    Article  Google Scholar 

  19. Diver, R.B., Miller, J.E., Allendorf, M.D., Siegel, N.P., and Hogan, R.E., J. Sol. Energ. T. Asme, 2008, vol. 130, no. 4, p. 8, https://doi.org/10.1115/1.2969781

    Article  CAS  Google Scholar 

  20. Diver, R.B., Miller, J.E., Siegel, N.P., and Moss, T.A., Amer. Soc. Mechanical Engineers, 2010.

  21. Zhu, L.Y. and Lu, Y.J., Energy Fuels, 2018, vol. 32, no. 1, pp. 736–746. https://doi.org/10.1021/acs.energyfuels.7b03284

    Article  CAS  Google Scholar 

  22. Muhich, C.L., Evanko, B.W., Weston, K.C., Lichty, P., Liang, X.H., Martinek, J., Musgrave, C.B., and Weimer, A.W., Science, 2013, vol. 341, no. 6145, pp. 540–542. https://doi.org/10.1126/science.1239454

    Article  CAS  PubMed  Google Scholar 

  23. Tou, M., Michalsky, R., and Steinfeld, A., Joule, 2017, vol. 1, no. 1, pp. 146-154. https://doi.org/10.1016/j.joule.2017.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Scheffe, J.R., McDaniel, A.H., Allendorf, M.D., and Weimer, A.W., Energy Environ. Sci., 2013, vol. 6, no. 3, pp. 963–973. https://doi.org/10.1039/c3ee23568h

    Article  CAS  Google Scholar 

  25. Jiang, Q.Q., Chen, Z.P., Tong, J.H., Yang, M., Jiang, Z.X., and Li, C., Chem. Commun., 2017, vol. 53, no. 6, pp. 1188–1191. https://doi.org/10.1039/c6cc08801e

    Article  CAS  Google Scholar 

  26. Le Gal, A., Abanades, S., and Flamant, G., Energy Fuels, 2011, vol. 25, no. 10, pp. 4836–4845. https://doi.org/10.1021/ef200972r

    Article  CAS  Google Scholar 

  27. Arifin, D. and Weimer, A.W., Sol. Energy, 2018, vol. 160, pp. 178–185. https://doi.org/10.1016/j.solener.2017.11.075

    Article  CAS  Google Scholar 

  28. Jiang, Q. Q., Zhou, G. L., Jiang, Z.X., and Li, C., Sol. Energy, 2014, vol. 99, pp. 55–66. https://doi.org/10.1016/j.solener.2013.10.021

    Article  CAS  Google Scholar 

  29. Chandran, R.B. and Davidson, J.H., Chem. Eng. Sci., 2016, vol. 146, pp. 302–315. https://doi.org/10.1016/j.ces.2016.03.001

    Article  CAS  Google Scholar 

  30. Furler, P., Scheffe, J., Gorbar, M., Moes, L., Vogt, U., and Steinfeld, A., Abstracts of Papers of the American Chemical Society, 2013, p. 245

  31. Hoskins, A.L., Millican, S.L., Czernik, C.E., Alshankiti, I., Netter, J.C., Wendelin, T.J., Musgrave, C.B., and Weimer, A.W., Appl. Energy, 2019, vol. 249, pp. 368–376. https://doi.org/10.1016/j.apenergy.2019.04.169

    Article  CAS  Google Scholar 

  32. Hathaway, B.J., Chandran, R.B., Gladen, A.C., Chase, T.R., and Davidson, J.H., Energy Fuels, 2016, vol. 30, no. 8, pp. 6654–6661. https://doi.org/10.1021/acs.energyfuels.6b01265

    Article  CAS  Google Scholar 

  33. Bulfin, B., Lowe, A.J., Keogh, K.A., Murphy, B.E., Lubben, O., Krasnikov, S.A., and Shvets, I.V., J. Phys. Chem. C, 2013, vol. 117, no. 46, pp. 24129–24137. https://doi.org/10.1021/jp406578z

    Article  CAS  Google Scholar 

  34. Bulfin, B., Call, F., Vieten, J., Roeb, M., Sattler, C., Shvets, I. V., J. Phys. Chem. C, 2016, vol. 120, no. 4, pp. 2027–2035. https://doi.org/10.1021/acs.jpcc.5b08729

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This project was supported by the National Key R&D Program of China (2019YFE0194300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingfei He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, M. Kinetics and Performance Study of Continuous Isothermal CeO2-Based Thermochemical Cycling for CO Production. Russ J Appl Chem 95, 1404–1412 (2022). https://doi.org/10.1134/S1070427222090166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222090166

Keywords:

Navigation