Skip to main content
Log in

Titanium Dioxide Floculation by Magnetic Nanocomposites Based оn Magnetite Nanoparticles and Statistical Copolymers of Acrylamide with Dimethylaminoethyl Methacrylate Hydrochloride

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Magnetic flocculants based on magnetite nanoparticles and statistical copolymers of acrylamide with dimethylaminoethyl methacrylate hydrochloride, differing in the content of ionogenic links and molecular mass, were synthesized. The FeCl2 and FeCl3 co-precipitation method yielded magnetite samples, differing in the average nanoparticles size, which were then modified acrylamide cationic copolymers. Individual magnetite particles, copolymers, and magnetic flocculants obtained by modification of copolymers with magnetite were characterized by the dynamic light scattering method. The influence of the magnetite nanoparticle size and ionogenic link content of the magnetic flocculant magnetic component on the TiO2 suspension flocculation process has been estimated. The predominantly neutralizing flocculation mechanism is evidenced by the opposite sign of the TiO2 charge particles and the macromolecules of the flocculating agents. It is shown that using magnetite characterized by a particle size of 70 nm can be obtained a highly effective multifunctional flocculant for phase separation of disperse systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Mohamed Noor, M.H., Wong, S., Ngadi, N., Mohammed Inuwa, I., and Opotu, L.A., Int. J. Environ. Sci. Technol., 2022, vol. 19, pp. 6935–6956. https://doi.org/10.1007/s13762-021-03369-0

    Article  CAS  Google Scholar 

  2. Jumadi, J., Kamari, A., Hargreaves, J.S.J., and Yusof, N., Int. J. Environ. Sci. Technol., 2020, vol. 17, pp. 3571–3594. https://doi.org/10.1007/s13762-020-02723-y

    Article  Google Scholar 

  3. Leshuk, T., Holmes, A.B., Ranatunga, D., Chen, P.Z., Jiang, Y., and Gu, F., ESI Env. Sci.: Nano, 2018, vol. 5, no. 2, pp. 509–519.

    CAS  Google Scholar 

  4. Liu, C., Wang, X., Qin, L., Li, H., and Liang, W., J. Environ. Chem. Eng., 2021, vol. 9, no. 5, ID 105980. https://doi.org/10.1016/j.jece.2021.105980

    Article  CAS  Google Scholar 

  5. Ma, J., Fu, X., Jiang, L., Zhu, G., and Shi, J., Environ. Sci. Pollut. Res., 2018, vol. 25, no. 26, pp. 25955–25966. https://doi.org/10.1007/s11356-018-2610-1

    Article  CAS  Google Scholar 

  6. Wang, T., Yang, W.L., Hong, Y., and Hou, Y.L., Chem. Eng. J., 2016, vol. 297, pp. 304–314. https://doi.org/10.1016/j.cej.2016.03.038

    Article  CAS  Google Scholar 

  7. Yu, W., Wang, C., Wang, G., and Feng, Q., J. Chem., 2020, vol. 2020, ID 1579424. https://doi.org/10.1155/2020/1579424

    Article  CAS  Google Scholar 

  8. Kobylinska, N., Klymchuk, D., Shakhovsky , A., Khainakova, O., Ratushnyak, Y., Duplij, V., and Matvieieva, N., RSC Adv., 2021, vol. 11, no. 43, pp. 26974–26987. https://doi.org/10.1039/D1RA04080D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sun, Y., Yu, Y., Zhou, S., Shah, K.J., Sun, W., Zhai, J., and Zheng, H., Separ. Purif. Technol., 2022, vol. 282, ID 120002. https://doi.org/10.1016/j.seppur.2021.120002

    Article  CAS  Google Scholar 

  10. Zhao, Y., Liang, W., Liu, L., Li, F., Fan, Q., and Sun, X., Biores. Technol., 2015, vol. 198, no. 43, pp. 789–796. https://doi.org/10.1016/j.biortech.2015.09.087

    Article  CAS  Google Scholar 

  11. Volkov, A.I. and Zharskii, I.M., Bol’shoi khimicheskii spravochnik (Big Chemical Reference Book), Minsk: Sovremennaya Shkola, 2005.

    Google Scholar 

  12. Kashina, E.S., Proskurina, V.E., Krupin, A.S., Gubochkina, D.V., Goldobina, S.S., and Galyametdinov, Yu.G., Vestn. Tekhnol. Univ. Kazan’, 2021, vol. 24, no. 10, pp. 5–9.

    Google Scholar 

  13. Lyubutin, I.S., Lin, C.R., Tseng, Y.T., Spivakov, A., Baskakov, A.O., Starchikov, S.S., Funtov, K.O., Jhang, C.-R., Tsai, Y.-J., and Hsu, H.S., Mater. Charact., 2019, vol. 150, pp. 213–219. https://doi.org/10.1016/j.matchar.2019.02.022

    Article  CAS  Google Scholar 

  14. Tarasevich, B.N., IK-spektry osnovnykh klassov organicheskikh soedinenii. Spravochnye materialy (IR Spectra of the Main Classes of Organic Compounds. Reference Materials), Moscow: MGU, 2012.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

Experiments on a stereoscopic microscope MSP-2 were performed by S.S. Dryabina, Ph.D., Associate Professor of the Department of Analytical, Physical Chemistry and Physical Chemistry of Polymers, Volgograd State Technical University.

The study was carried out using the equipment of the Center for Collective Use “Nanomaterials and Nanotechnologies” of the Kazan National Research Technological University with the financial support of the project of the Ministry of Education and Science of Russia (grant no. 075-15-2021-699).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Proskurina.

Ethics declarations

The authors declare no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Proskurina, V.E., Kashina, E.S. & Rakhmatullina, A.P. Titanium Dioxide Floculation by Magnetic Nanocomposites Based оn Magnetite Nanoparticles and Statistical Copolymers of Acrylamide with Dimethylaminoethyl Methacrylate Hydrochloride. Russ J Appl Chem 95, 1387–1393 (2022). https://doi.org/10.1134/S1070427222090142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222090142

Keywords:

Navigation