Skip to main content
Log in

Polylactide-Based Nonwoven Materials for Sorption of Oils of Different Viscosity

  • Sorption and Ion Exchange Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Nonwoven biodegradable materials are promising high-performance sorbents for oil spills cleanup. Nonwoven materials differing in characteristics (fiber diameter, fabric thickness, packing density) were prepared by electrospinning of polylactide solutions in hexafluoroisopropanol, chloroform, and dichloromethane. The mean fiber diameter varies from 2.3 to 6 μm, and the packing density, from 7.5 to 23%. In all the nonwoven materials, polylactide is in the amorphous state, whereas the initial polymer is partially crystalline. The nonwoven materials are highly hydrophobic and rapidly absorb oil. The sorption capacity of the samples increases with an increase in the viscosity of the sorption medium and with a decrease in the packing density of fibers in the fabrics, reaching 170 g g–1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Zhong, Y., Godwin, P., Jin, Y., and Xiao, H., Adv. Ind. Eng. Polym. Res., 2020, vol. 3, no. 1, pp. 27–35. https://doi.org/10.1016/j.cogsc.2019.12.005

    Article  CAS  Google Scholar 

  2. Haider, T.P., Völker, C., Kramm, J., Landfester, K., and Wurm, F.R., Angew. Chem. Int. Ed., 2019, vol. 58, no. 1, pp. 50–62. https://doi.org/10.1002/anie.201805766

    Article  CAS  Google Scholar 

  3. Liu, S., Qin, S., He, M., Zhou, D., Qin, Q., and Wang, H., Compos. Part B. Eng., 2020, vol. 199, ID 108238. https://doi.org/10.1016/j.compositesb.2020.108238

    Article  Google Scholar 

  4. Huang, C. and Thomas, N.L., Eur. Polym. J., 2018, vol. 99, pp. 464–476. https://doi.org/10.1016/j.eurpolymj.2017.12.025

    Article  CAS  Google Scholar 

  5. Zhao, J., Wang, W., Ye, C., Li, Y., and You, J., J. Membr. Sci., 2018, vol. 563, pp. 762–767. https://doi.org/10.1016/j.memsci.2018.06.053

    Article  CAS  Google Scholar 

  6. Iordanskii, A.L., Samoilov, N.A., Olkhov, A.A., Markin, V.S., Rogovina, S.Z., Kildeeva, N.R., and Berlin, A.A., Dokl. Phys. Chem., 2019, vol. 487, no. 2, pp. 106–108. https://doi.org/10.1134/S0012501619080049

    Article  CAS  Google Scholar 

  7. Liang, J.W., Prasad, G., Wang, S.C., Wu, J.L., and Lu, S.G., Appl. Sci., 2019, vol. 9, no. 5, ID 1014. https://doi.org/10.3390/app9051014

    Article  Google Scholar 

  8. Liu, L., Lin, Z., Niu, J., Tian, D., and He, J., Adsorpt. Sci. Technol., 2019, vol. 37, nos. 5–6, pp. 438–450. https://doi.org/10.1177/0263617419828059

    Article  CAS  Google Scholar 

  9. Zhang, D., Jin, X.Z., Huang, T., Zhang, N., Qi, X.D., Yang, J.H., Zhou, Z.W., and Wang, Y., ACS Appl. Mater. Interfaces, 2019, vol. 11, no. 5, pp. 5073–5083. https://doi.org/10.1021/acsami.8b19523

    Article  CAS  PubMed  Google Scholar 

  10. Wang, Y., Li, X., Dai, X., Zhan, Y., Ding, X., Wang, M., and Wang, X., J. Chem. Technol. Biotechnol., 2020, vol. 95, no. 3, pp. 730–738. https://doi.org/10.1002/jctb.6256

    Article  CAS  Google Scholar 

  11. Li, H., Li, Y., Yang, W., Cheng, L., and Tan, J., Polymers, 2017, vol. 9, no. 2, ID 3. https://doi.org/10.3390/polym9020003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Malakhov, S.N. and Chvalun, S.N., Russ. J. Appl. Chem., 2019, vol. 92, pp. 1487–1491. https://doi.org/10.1134/S107042721911003X

    Article  CAS  Google Scholar 

  13. Griffiths, S.K., Environ. Sci. Technol., 2012, vol. 46, pp. 5616–5622. https://doi.org/10.1021/es204569t

    Article  CAS  PubMed  Google Scholar 

  14. Kostyanoi, A.G., Lavrova, O.Yu., and Lupyan, E.A., Sovr. Probl. Distants. Zond. Zemli Kosm., 2021, vol. 18, no. 4, p. 304. https://doi.org/10.21046/2070-7401-2021-18-5-28-43

    Article  Google Scholar 

  15. Cho, A.R., Shin, D.M., Jung, H.W., Hyun, J.C., Lee, J.S., Cho, D., and Joo, Y.L., J. Appl. Polym. Sci., 2011, vol. 120, no. 2, pp. 752–758. https://doi.org/10.1002/app.33262

    Article  CAS  Google Scholar 

  16. Rodina, A.V., Tenchurin, T.K., Saprykin, V.P., Shepelev, A.D., Mamagulashvili, V.G., Grigor’ev, T.E., Lukanina, K.I., Orekhov, A.S., Moskaleva, E.Yu., and Chvalun, S.N., Bull. Exp. Biol. Med., 2016, vol. 162, no. 1., pp. 120–126. https://doi.org/10.1007/s10517-016-3560-6

    Article  CAS  PubMed  Google Scholar 

  17. Li, X., Teng, K., Shi, J., Wang, W., Xu, Z., Deng, H., Lv, H., and Li, F., J. Taiwan Inst. Chem. Eng., 2016, vol. 60, pp. 636–642. https://doi.org/10.1016/j.jtice.2015.11.012

    Article  CAS  Google Scholar 

  18. Kang, Y., Chen, P., Shi, X., Zhang, G., and Wang, C., Polymer, 2018, vol. 156, pp. 250–260. https://doi.org/10.1016/j.polymer.2018.10.009

    Article  CAS  Google Scholar 

  19. Sauer, B.B. and Dee, G.T., Macromolecules, 1991, vol. 24, pp. 2124–2126. https://doi.org/10.1021/ma00008a070

    Article  CAS  Google Scholar 

  20. Yuan, Z., Zhang, K., Jiao, X., Cheng, Y., Zhang, Y., Zhang, P., Zhang, X., and Wen, Y., Biomater. Sci., 2019, vol. 7, pp. 5084–5096. https://doi.org/10.1039/c9bm01045a

    Article  CAS  PubMed  Google Scholar 

  21. Malakhov, S.N. and Chvalun, S.N., Nanotechnol. Russ., 2020, vol. 15, pp. 451–455. https://doi.org/10.1134/S1995078020040096

    Article  CAS  Google Scholar 

  22. Mazalevska, O., Struszczyk, M.H., and Krucinska, I., J. Appl. Polym. Sci., 2013, vol. 129, no. 2, pp. 779–792. https://doi.org/10.1002/app.38818

    Article  CAS  Google Scholar 

  23. Di Maio, L., Garofalo, E., Scarfato, P., and Incarnato, L., Polym. Composite, 2015, vol. 36, no. 6, pp. 1135–1144. https://doi.org/10.1002/pc.23424

    Article  CAS  Google Scholar 

  24. Zhou, C., Li, H., Zhang, W., Li, J., Huang, S., Meng, Y., Christiansen, J.C., Yu, D., Wu, Z., and Jiang, S., CrystEngComm., 2016, vol. 18, no. 18, pp. 3237–3246. https://doi.org/10.1039/C6CE00464D

    Article  CAS  Google Scholar 

  25. Hsieh, Y.T., Nozaki, S., Kido, M., Kamitani, K., Kojio, K., and Takahara, A., Polym. J., 2020, vol. 52, no. 7, pp. 755–763. https://doi.org/10.1038/s41428-020-0343-8

    Article  CAS  Google Scholar 

  26. Furuhashi, Y., Kimura, Y., and Yamane, H., J. Polym. Sci. Polym. Phys., 2007, vol. 45, no. 2, pp. 218–228. https://doi.org/10.1002/polb.21035

    Article  CAS  Google Scholar 

  27. Zhang, M. and Thomas, N.L., Adv. Polym. Technol., 2011, vol. 30, no. 2, pp. 67–79. https://doi.org/10.1002/adv.20235

    Article  CAS  Google Scholar 

  28. Pan, P., Liang, Z., Zhu, B., Dong, T., and Inoue, Y., Macromolecules, 2008, vol. 41, no. 21, pp. 8011–8019. https://doi.org/10.1021/ma801436f

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was performed in part using the equipment of the Resource Centers for Optical Microscopy and Spectroscopy and for Laboratory X-ray Methods at the NRC Kurchatov Institute. The authors are grateful to Dr. N.M. Kuznetsov for measuring the viscosity of the test media.

Funding

The study was financially supported by the Russian Foundation for Basic Research and Moscow City Government (project no. 21-33-70084 mol_a_mos).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Malakhov.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malakhov, S.N., Malyshkina, A.V. & Chvalun, S.N. Polylactide-Based Nonwoven Materials for Sorption of Oils of Different Viscosity. Russ J Appl Chem 95, 1373–1379 (2022). https://doi.org/10.1134/S1070427222090129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222090129

Keywords:

Navigation