Skip to main content
Log in

Dopamine-Based Nanoflower (Dop/CuNf) as a Catalyst for Sonocatalytic Degradation of Methylene Blue

  • Organic Synthesis and Industrial Organic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

This article deals with dopamine based nanoflower (Dop/CuNf) (Cu = copper) through a facile approach for sonocatalytic degradation of methylene blue. The formation of Dop/CuNf was confirmed by scanning electron microscopy (SEM) analysis, powder X-ray diffraction (XRD), fourier-transform infrared spectrum (FT-IR), and energy-dispersive analysis of X-rays (EDX). The sonocatalytic activity of Dop/CuNf was determined in the degradation of Methylene blue (MB) in aqueous environments by the UV-vis analysis method. The influence of several operational factors like irradiation time, catalyst dosage, H2O2 concentration and initial concentration of MB were evaluated using ultrasound (US) irradiation. The achieved results illustrated that apparent rate constant values (kapp) and the half-life (t1/2) of the sonocatalytic degradation of MB dye (40 mg/L) using Dop/CuNf (1.2 mg) and H2O2 (5 mM) within 20 min were 0.104 min–1 and 6.665 min–1, respectively. According to these data, sonocatalytic technique delivers significant results as cost-effective and environment sensitive method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Wang, F.K., Yang, S.Y., and Dong, H.Z., Journal of Molecular Structure, 2021, vol. 1227, pp. 129540. https://doi.org/10.1016/j.molstruc.2020.129540

    Article  CAS  Google Scholar 

  2. Babu, D.S., Srivastava, V., Nidheesh, P.V., and Kumar, M.S., Science of the Total Environment, 2019, vol. 696, pp. 133961. https://doi.org/10.1016/j.scitotenv.2019.133961

    Article  CAS  Google Scholar 

  3. Wu, J., Eiteman, M.A., and Law, S.E., Journal of Environmental Engineering ASCE, 1998, vol. 124, pp. 272–277. https://doi.org/10.1061/(ASCE)0733-9372(1998)124:3(272)

    Article  Google Scholar 

  4. Yang, X., Zhang, Q., Gu, W., and Teng, F., Journal of Crystal Growth, 2020, vol. 541, p. 125681. https://doi.org/10.1016/j.jcrysgro.2020.125681

    Article  CAS  Google Scholar 

  5. Nas, M.S., and Kaya, H., Inorganic and Nano-Metal Chemistry, 2020, vol. 51, pp. 614-626. https://doi.org/10.1080/24701556.2020.1799406

    Article  CAS  Google Scholar 

  6. Sharma, K.S., Mudgal, A., Nair, M., and Kumar, D., Materials Chemistry and Physics, 2022, vol. 290, pp. 126609. https://doi.org/10.1016/j.matchemphys.2022.126609

    Article  CAS  Google Scholar 

  7. Shi, Z., Zhou, H., Li, F., and Li, T., Materials Science in Semiconductor Processing, 2022, vol. 144, pp. 106562. https://doi.org/10.1016/j.mssp.2022.106562

    Article  CAS  Google Scholar 

  8. JesúsRuíz-Baltazar, A de., Ultrasonics Sonochemistry, 2021, vol. 73, p. 105521. https://doi.org/10.1016/j.ultsonch.2021.105521

    Article  CAS  Google Scholar 

  9. Sadeghi, M., Farhadi, S., and Zabardasti, A., New Journal of Chemistry, 2020, vol. 44, pp. 8386–8401. https://doi.org/10.1039/D0NJ01393E.

    Article  CAS  Google Scholar 

  10. Khataee, A., Soltani, R.D.C., Karimi, A., and Joo, S.W., Ultrasonics Sonochemistry, 2015, vol. 23, pp. 219–230. https://doi.org/10.1016/j.ultsonch.2014.08.023

    Article  CAS  PubMed  Google Scholar 

  11. Babu, S.G., Karthik, P., John, M.C., et al., Ultrasonics Sonochemistry, 2019, vol. 50, pp. 218–223. https://doi.org/10.1016/j.ultsonch.2018.09.021.

    Article  CAS  PubMed  Google Scholar 

  12. Soltani, R D.C., Jorfi, S., Ramezani, H., and Purfadakari, S., Ultrasonics Sonochemistry, 2016, vol. 28, pp. 69–78. https://doi.org/10.1016/j.ultsonch.2015.07.002

    Article  CAS  Google Scholar 

  13. Zhang, S., Ultrasonics - Sonochemistry, 2012, vol. 19, pp. 767–771. https://doi.org/10.1016/j.ultsonch.2011.12.016

    Article  CAS  PubMed  Google Scholar 

  14. Tuziuti, T., Yasui, K., Sivakumar, M., Iida, Y., and Miyoshi, N., J Phys Chem A, 2005, vol. 109, pp. 4869–4872. https://doi.org/10.1021/jp0503516

    Article  CAS  PubMed  Google Scholar 

  15. Jun, B., Han, J., Min, C., and Yoon, Y., Ultrasonics - Sonochemistry, 2020, vol.64, p. 104993. https://doi.org/10.1016/j.ultsonch.2020.104993

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, N., Zhang, G., Chong, S., Zhao, H., Huang, T., and Zhu, J., Journal of Environmental Management, 2018, vol. 205, pp. 134–141. https://doi.org/10.1016/j.jenvman.2017.09.073

    Article  CAS  PubMed  Google Scholar 

  17. Khataee, A., Honarnezhad, R., and Fathinia, M., Journal of Environmental Management, 2018, vol. 211, pp. 225–237. https://doi.org/10.1016/j.jenvman.2018.01.054

    Article  CAS  PubMed  Google Scholar 

  18. Mohammad, M., Ahmadpoor, F., and Shojaosadati, S.A., ACS Omega, 2020, vol. 5, pp. 18766–18777. https://doi.org/10.1021/acsomega.0c01864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, M., Peltier, R., Zhang, M., et al., Journal of Materials Chemistry B, 2017, vol. 5, pp. 5311–5317. https://doi.org/10.1039/C7TB00610A

    Article  CAS  PubMed  Google Scholar 

  20. Celik, C., Ildiz, N., and Ocsoy, I., Scientific Reports, 2020, vol. 10, pp. 1–11. https://doi.org/10.1038/s41598-020-59699-5

    Article  CAS  Google Scholar 

  21. Findik, M., Bingol, H., and Erdem, A., Talanta, 2021, vol. 222, p. 121647. https://doi.org/10.1016/j.talanta.2020.121647

    Article  CAS  PubMed  Google Scholar 

  22. Findik, M., Bingol, H., and Erdem, A., Sensors and Actuators, B: Chemical, 2021, vol. 29, p. 129120. https://doi.org/10.1016/j.snb.2020.129120

    Article  CAS  Google Scholar 

  23. Zhang, X., Huang, Y., Gu, A., Wang, G., Fang, B., and Wu, H., Nanocomposites, 2012,vol. 30, pp. 501–506. https://doi.org/10.1002/cjoc.201280022

    Article  CAS  Google Scholar 

  24. Yin, Y., Xiao, Y., Lin, G., Xiao, Q., Lin, Z., and Cai, Z., Journal of Materials Chemistry B, 2015, vol. 3, pp. 2295–2300. https://doi.org/10.1039/C4TB01697A

    Article  CAS  PubMed  Google Scholar 

  25. Sun, T., Fu, M., Xing, J., and Ge, Z., Water Science and Technology, 2020, vol. 81, pp. 29–39. https://doi.org/10.2166/wst.2020.068

    Article  CAS  PubMed  Google Scholar 

  26. Jiao, J., Xin, X., Wang, X., Xie, Z., Xia, C., and Pan, W., RSC Advances, 2017, vol. 7, pp. 43474–43482. https://doi.org/10.1039/C7RA06592B

    Article  CAS  Google Scholar 

  27. Sadeghi, M., Farhadi, S., and Zabardasti, A., RSC Advances, 2020, vol. 10, pp. 44034–44049. https://doi.org/10.1039/D0RA08831E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Parangusan, H., Ponnamma, D., Al-Maadeed, M.A.A., and Marimuthu, A., Photochemistry and Photobiology, 2018, vol. 94, pp. 237–246. https://doi.org/10.1111/php.12867

    Article  CAS  PubMed  Google Scholar 

  29. Mardikar, S.P., Kulkarni, S., and Adhyapak, P,V., Journal of Environmental Chemical Engineering, 2020, vol. 8, p. 102788. https://doi.org/10.1016/j.jece.2018.11.033

    Article  CAS  Google Scholar 

  30. Vinayagam, R., and Selvaraj, R., Journal of Photochemistry & Photobiology, B: Biology, 2020, vol.203, p. 111760. https://doi.org/10.1016/j.jphotobiol.2019.111760

    Article  CAS  Google Scholar 

  31. Pirdosti, S.F., Khoshnavazi, R., and Naseri, E., Journal of Coordination Chemistry, 2020, vol. 73, pp. 723–736. https://doi.org/10.1080/00958972.2020.1753713

    Article  CAS  Google Scholar 

  32. Sharma, S. and Khare, N., Advanced Powder Technology, 2018, vol. 29, pp. 3336–3347. https://doi.org/10.1016/j.apt.2018.09.012

    Article  CAS  Google Scholar 

  33. Zhao, L., Xi, X., Liu, Y., Ma, L., and Nie, Z., Journal of the Taiwan Institute of Chemical Engineers, 2020, vol. 115, p. 339. https://doi.org/10.1016/j.jtice.2020.10.031

    Article  CAS  Google Scholar 

  34. Karmakar, S., Ghosh, S., and Kumbhakar, P., J. Nanopart. Res., 2020, vol. 22. https://doi.org/10.1007/s11051-019-4710-3

    Article  Google Scholar 

  35. Ge, S., Cai, L., and Li, D., Journal of Nanoparticle Research, 2015, vol. 17, pp. 1–11. https://doi.org/10.1007/s11051-015-3293-x

    Article  CAS  Google Scholar 

  36. Khan, M.A., Nayan, N., Ahmad, M.K., et al., Molecules, 2021, vol. 26, p. 2700. https://doi.org/10.3390/molecules26092700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mirzaei, D., Zabardasti, A., Sadeghi, M., and Yekta, S., Journal of Inorganic and Organometallic Polymers and Materials, 2021, vol. 31, pp. 960-977. https://doi.org/10.1007/s10904-020-01844-8

    Article  CAS  Google Scholar 

  38. Kamal, S., Pan, G.T., Chong, S., and Yang, T.C.K., Processes, 2020, vol. 8, p. 104. https://doi.org/10.3390/pr8010104

    Article  CAS  Google Scholar 

  39. Moalem-Banhangi, M., Ghaeni, N., and Ghasemi, S., Synthetic Metals, 2021, vol. 271, p. 116626. https://doi.org/10.1016/j.synthmet.2020.116626

    Article  CAS  Google Scholar 

  40. Noypha, A., Areerob, Y., Chanthai, S., and Nuengmatcha, P., Journal of the Korean Ceramic Society, 2021, vol. 58, pp. 297–306. https://doi.org/10.1007/s43207-020-00096-z

    Article  CAS  Google Scholar 

  41. Khataee, A., Gholami, P., and Vahid, B., Ultrasonics Sonochemistry, 2016, vol. 29, pp. 213-225. https://doi.org/10.1016/j.ultsonch.2015.09.012

    Article  CAS  PubMed  Google Scholar 

  42. Uma, K., Munusamy, K., Munirathinam, E., Yang, T.C.K., Lin, J.H., and Kannaiyan, D., Journal of Inorganic and Organometallic Polymers and Materials, 2020, vol. 30, pp. 3797–3807. https://doi.org/10.1007/s10904-020-01531-8

    Article  CAS  Google Scholar 

  43. Rastgoo, M., Montazer, M., Harifi, T., and Rad, M.M., Materials Science in Semiconductor Processing, 2017, vol. 66, pp. 92–98. https://doi.org/10.1016/j.mssp.2017.04.004

    Article  CAS  Google Scholar 

  44. Nas, M.S., Journal of Environmental Chemical Engineering, 2021, vol. 9, p. 105207. https://doi.org/10.1016/j.jece.2021.105207

    Article  CAS  Google Scholar 

  45. Tian, H.X., Zha, M., Ding, J.G., Zhu, L.M., Li, B.L., and Wu, B., Journal of Solid State Chemistry, 2021, vol. 304, pp. 122627. https://doi.org/10.1016/j.jssc.2021.122627

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author would like to acknowledges Education, Research Laboratory, Department of Chemistry Education, A.K. Education Faculty, Necmettin Erbakan University, Turkey, for providing the opportunity to work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asuman Ucar.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ucar, A. Dopamine-Based Nanoflower (Dop/CuNf) as a Catalyst for Sonocatalytic Degradation of Methylene Blue. Russ J Appl Chem 95, 1364–1372 (2022). https://doi.org/10.1134/S1070427222090117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222090117

Keywords:

Navigation