Skip to main content
Log in

Polymerization of Tricyclononenes Contaning Trialkoxysilyl Substituents with Long Alkyl Fragments

  • Macromolecular Compounds and Polymeric Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Metathesis polymerization of tricyclononenes containing tri(n-alkoxy)silyl substituents with long n-alkyl fragments (from six to ten carbon atoms) and addition polymerization of tri(n-decyloxy)silyltricyclononene were investigated. Polymerization conditions were found that make it possible to synthesize high-molecular-weight products (Mw more than 5×105) with desired yields (75–90%). The resulting polymers were characterized by NMR spectroscopy, X-ray phase analysis, differential scanning calorimetry, and thermogravimetric analysis. The gas transport properties of a polymer based on tri(n-decyloxy)silyltricyclononene obtained by metathesis polymerization were studied. It was shown that this polymer is characterized by a high separation selectivity with respect to the n-butane/methane gas pair (44).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Baker, R.W. and Low, B.T., Macromolecules, 2014, vol. 47, pp. 6999–7013. https://doi.org/10.1021/ma501488s

    Article  CAS  Google Scholar 

  2. Stern, S.A., Shah, V.M., and Hardy, B.J., J. Polym. Sci. Part B: Polym. Phys., 1987, vol. 25, pp. 1263–1298. https://doi.org/10.1002/polb.1987.090250607

    Article  CAS  Google Scholar 

  3. Pinnau, I. and Toy, L.G., J. Membr. Sci., 1996, vol. 116, pp. 199–209. https://doi.org/10.1016/0376-7388(96)00041-5

    Article  CAS  Google Scholar 

  4. Thomas, S., Pinnau, I., Du, N., and Guiver, M.D., J. Membr. Sci., 2009, vol. 333, pp. 125–131. https://doi.org/10.1016/j.memsci.2009.02.003

    Article  CAS  Google Scholar 

  5. Low, Z.X., Budd, P.M., McKeown, N.B., Patterson, D.A., Chem. Rev., 2018, vol. 118, pp. 5871–5911. https://doi.org/10.1021/acs.chemrev.7b00629

    Article  CAS  PubMed  Google Scholar 

  6. Kolmangadi, M.A., Szymoniak, P., Smales, G.J., Alentiev, D.A., Bermeshev, M., Böhning, M., and Schönhals, A., Macromolecules, 2020, vol. 53, pp. 7410–7419. https://doi.org/10.1021/acs.macromol.0c01450

    Article  CAS  Google Scholar 

  7. Alentiev, D.A., Egorova, E.S., Bermeshev, M.V., Starannikova, L.E., Topchiy, M.A., Asachenko, A.F., Gribanov, P.S., Nechaev, M.S., Yampolskii, Yu.P., and Finkelshtein, E.Sh.., J. Mater. Chem. A, 2018, vol. 6, pp. 19393–19408. https://doi.org/10.1039/c8ta06034g

    Article  CAS  Google Scholar 

  8. Sundell, B.J., Lawrence, J.A., Harrigan, D.J., Vaughn, J.T., Pilyugina, T.S., and Smith, D.R., RSC Adv., 2016, vol. 6, pp. 51619–51628. https://doi.org/10.1039/c6ra10383a

    Article  CAS  Google Scholar 

  9. Maroon, C.R., Townsend, J., Gmernicki, K.R., Harrigan, D.J., Sundell, B.J., Lawrence, J.A., Mahurin, S.M., Vogiatzis, K.D., and Long, B.K., Macromolecules, 2019, vol. 52, pp. 1589–1600. https://doi.org/10.1021/acs.macromol.8b02497

    Article  CAS  Google Scholar 

  10. Maroon, C.R., Townsend, J., Higgins, M.A., Harrigan, D.J., Sundell, B.J., Lawrence, J.A., O’Brien, J.T., O’Neal, D., Vogiatzis, K.D., and Long, B.K.., J. Membr. Sci., 2020, vol. 595, pp. 117532. https://doi.org/10.1016/j.memsci.2019.117532

    Article  CAS  Google Scholar 

  11. Wozniak, A.I., Bermesheva, E.V., Borisov, I.L., Volkov, A.V., Petukhov, D.I., Gavrilova, N.N., Shantarovich, V.P., Asachenko, A.F., Topchiy, M.A., Finkelshtein, E.Sh., and Bermeshev, M.V., J. Membr. Sci., 2022, vol. 641, pp. 119848. https://doi.org/10.1016/j.memsci.2021.119848

    Article  CAS  Google Scholar 

  12. Borisov, I.L., Grushevenko, E.A., Anokhina, T.S., Bakhtin, D.S., Levin, I.S., Bondarenko, G.N., Volkov, V.V., and Volkov, A.V., Mater. Today Chem., 2021, vol. 22, pp. 100598. https://doi.org/10.1016/j.mtchem.2021.100598

    Article  CAS  Google Scholar 

  13. Suslov, D.S., Bykov, M.V., and Kravchenko, O.V., Polym. Sci. Ser., 2019, vol. 61, pp. 145–173. https://doi.org/10.1134/S181123821901017

    Article  CAS  Google Scholar 

Download references

Funding

The synthesis of metathesis polymers was carried out within the framework of the State Program of Topchiev Institute of petrochemical synthesis of the Russian Academy of Sciences. The study of the gas transport properties and the synthesis of the addition polymer were supported by the grant of the President of the Russian Federation (no. МK-1514.2022.1.3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Alentiev.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alentiev, D.A., Starannikova, L.E. & Bermeshev, M.V. Polymerization of Tricyclononenes Contaning Trialkoxysilyl Substituents with Long Alkyl Fragments. Russ J Appl Chem 95, 1336–1346 (2022). https://doi.org/10.1134/S1070427222090087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222090087

Keywords:

Navigation