Skip to main content
Log in

Synthesis and Properties of Polymeric Rifabutin Forms with Different Types of Polymer–Antibiotic Bonding

  • Macromolecular Compounds and Polymeric Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Water-soluble polymeric forms of Rifabutin antitubercular drug, based on copolymers of acrylamide with 2-acrylamido-2-methylpropanesulfonic acid and of N-vinylpyrrolidone with 2-aminoethyl methacrylate, with ionic and covalent polymer–Rifabutin bonding were prepared. Polymeric carriers with the molecular mass of 7.5–98 kDa were prepared by radical copolymerization in alcohols at 60°С; the hydrodynamic radii Rh-D of the polymer–Rifabutin complex and initial polymeric carrier were 2.6 and 2.35 nm, respectively. The Rifabutin content of the polymer systems was 14.1–43.4 mol %. The kinetics of the Rifabutin release from the polymeric forms in a model medium was estimated. Both types of the polymeric forms showed high activity toward M. smegmatis ATCC-607.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Skinner, M.H., Hsieh, M., Torseth, J., Pauloin, D., Bhatia, G., Harkonen, S., Merigan, T.C., and Blaschke, T.F., Antimicrob. Agents Chemother., 1989, vol. 33, no. 8, pp. 1237–1241. https://doi.org/10.1128/AAC.33.8.1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Panarin, E.F., Lavrov, N.A., Solovskii, M.V., and Shal’nova, L.I., Polimery-nositeli biologicheski aktivnykh veshchestv (Polymeric Carriers of Biologically Active Compounds), St. Petersburg: Professiya, 2014.

    Google Scholar 

  3. Solovskii, M.V., Eropkin, M.Yu., Eropkina, E.M., Smirnova, M.Yu., and Belokhvostova, A.T., Toksikol. Vestn., 2012, vol. 113, no. 2, pp. 24–26.

    Google Scholar 

  4. Anan’eva, E.P., Baranov, S.S., Karavaeva, A.V., Borisenko, M.S., Solovskii, M.V., Zakharova, N.V., Prazdnikova, T.A., and Tarabukina, E.B., Antibiot. Khimioter., 2014, vol. 59, nos. 11–12, pp. 3–6.

    Google Scholar 

  5. Lee, J.H., Kopeckova, P., Kopecek, J., and Andrade, J.D., Biomaterials, 1990, vol. 11, no. 7, pp. 455–464. https://doi.org/10.1016/0142-9612(90)90058-x

    Article  CAS  PubMed  Google Scholar 

  6. DeFife, K.M., Shive, M.S., Hagen, K.M., Clapper, D.L., and Anderson, J.M., J. Biomed. Mater. Res., 1999, vol. 44, no. 3, pp. 298–307. https://doi.org/10.1002/(sici)1097-4636(19990305)44:3<298::aid-jbm8>3.0.co;2-n

    Article  CAS  PubMed  Google Scholar 

  7. Bianculli, R.H., Mase, J.D., and Schulz, M.D., Macromolecules, 2020, vol. 53, no. 21, pp. 9158–9186. https://doi.org/10.1021/acs.macromol.0c01273

    Article  CAS  Google Scholar 

  8. Gantlett, K.E., Weber, J.N., and Sattentau, Q.J., Antiviral Res., 2007, vol. 75, no. 3, pp. 188–197. https://doi.org/10.1016/j.antiviral.2007.03.004

    Article  CAS  PubMed  Google Scholar 

  9. Farag, R.K., Atta, A.M., Labena, A., AlHawari, S.H., Safwat, G., and Diab, A., Materials, 2020, vol. 13, no. 21, pp. 4891–4905. https://doi.org/10.3390/ma13214891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Entsiklopediya polimerov (Polymer Encyclopedia), Kargin, V.A., Ed., Moscow: Sov. Entsiklopediya, 1972.

    Google Scholar 

  11. Pavlov, G.M., Panarin, E.F., Korneeva, E.V., Kurochkin, K.V., Baikov, V.E., and Ushakova, V.N., Vysokomol. Soedin., Ser. A, 1990, vol. 32, no. 6, pp. 1190–1196.

    CAS  Google Scholar 

  12. Tsvetkov, V.N., Zhestkotsepnye polimernye molekuly (Rigid-Chain Polymer Molecules), Leningrad: Nauka, 1986.

    Google Scholar 

  13. Kubarko, A.I., Semenovich, A.A., and Pereverzev, V.A., Normal’naya fiziologiya (Normal Physiology), Moscow: Vysshaya Shkola, 2013.

    Google Scholar 

  14. Navashin, S.M. and Fomina, I.P., Spravochnik po antibiotikam (Handbook of Antiobiotics), Moscow: Meditsina, 1974.

    Google Scholar 

  15. Sharina, Yu.N., Vostrikov, V.V., Sorokoumova, G.M., Selishcheva, A.A., and Shvets, V.I., Antibiot. Khimioter., 2005, vol. 50, no. 7, pp. 3–7.

    Google Scholar 

  16. Vostrikov, V.V., Selishcheva, A.A., Sokoroumova, G.M., and Shvets, V.I., Biol. Membr., 2007, vol. 24, no. 2, pp. 169–174.

    CAS  Google Scholar 

  17. Plate, N.A. and Vasil’ev, A.E., Fiziologicheski aktivnye polimery (Physiologically Active Polymers), Moscow: Khimiya, 1986.

    Google Scholar 

  18. Pokrovskii, V.M. and Korot’ko, G.F., Fiziologiya cheloveka (Human Physiology), Moscow: Meditsina, 1997.

    Google Scholar 

  19. Friss, S.A., Medits. Ekspert. Pravo, 2011, no. 6, pp. 9–11.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the staff of the Chair of Microbiology and Virology, Pavlov First St. Petersburg State Medical University for the assistance in microbiological trials of the polymeric forms obtained and to Dr. Sci. (Chem.) N.A. Lavrov for critical analysis of the manuscript.

Funding

The study was performed within the framework of the government assignment of the Ministry of Science and Higher Education of the Russian Federation (theme no. 122012100171-8: Nanostructuring and Modification of Biologically Active Compounds by Synthetic and Natural Polymers).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Borisenko.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vagin, A.A., Borisenko, M.S., Solovskii, M.V. et al. Synthesis and Properties of Polymeric Rifabutin Forms with Different Types of Polymer–Antibiotic Bonding. Russ J Appl Chem 95, 1311–1321 (2022). https://doi.org/10.1134/S1070427222090051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222090051

Keywords:

Navigation