Skip to main content
Log in

Synthesis and Application of Non-Toxic Superhydrophobic Phenyl Substituted Pyrazolidine Based Benzoxazine Coating for Oil-Water Separation and Corrosion Resistance

  • Organic Synthesis and Industrial Organic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The present work investigate the coating behaviors of a series of polybenzoxazines (PBZs) derived from N-phenyl pyrazolidine scaffold based bisphenol (PPBP) and long chain aliphatic amines. Initially, the prepared PPBP was verified for its non-toxicity in comparison with bisphenol-A. Subsequently, the PBZs prepared from PPBP displayed enhanced values of water contact angle (WCA) when coated over different substrates namely cotton fabric and mild steel. In specific, the poly(PPBP-dda) and poly(PPBP-oda) coated cotton fabrics delivered outstanding WCA values of 154.2° and 153.5°, respectively. Observations from SEM images suggest that poly(PPBP-dda), and poly(PPBP-oda) exhibit closely packed molecular arrangement contributing for rough surfaces due to presence of their long dodecyl(C12) and octadecyl(C18) chains, respectively. Subsequently the oil-water separation investigation using the poly(PPBP-dda) coated fabric delivered superior separation efficiency (98 %) and flux values [6330 L/(m2 h)]. At the same time, the mild steel specimens when coated with poly(PPBP-dda) was also found to be less aggressive towards corrosion in artificial sea-water showing 81% efficiency and charge transfer resistance (Rct) of 280 Ω cm–2. Further, screening of the PPBP monomer and corresponding polybenzoxazines exhibited good antibacterial activity. Thus, a new type of PPBP based PBZs prepared in present work can lead further development of various new non-toxic substrates to replace bis-phenol derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Scheme 2.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

REFERENCES

  1. Hatsuo, Ishida and Tarek, Agag, Handbook of Benzoxazine Resins, Amsterdam: Elsevier, 2011. https://doi.org/10.1016/C2010-0-66598-9

    Book  Google Scholar 

  2. Okada, H., Tokunaga, T., Liu, X., Takayanagi, S., Matsushima, A., and Shimohigashi, Y., Health Perspect., 2008, vol. 116(1), pp. 32–38. https://doi.org/10.1289/ehp.10587

    Article  CAS  Google Scholar 

  3. Lehmler, H.J., Liu, B., Gadogbe, M., and Bao, W., ACS Omega, 2018, vol. 3(6), pp. 6523–6532. https://doi.org/10.1021/acsomega.8b00824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bisphenol, A., (BPA): Use in Food Contact Application|FDA, 2022. https://www.fda.gov/food/food-additives-petitions/bisphenol-bpa-use-food-contact-application.

  5. Liu, J. and Ishida, H., Macromolecules, 2014, vol. 47(16), pp. 5682–5690. https://doi.org/10.1021/ma501294y

    Article  CAS  Google Scholar 

  6. Rochester, J.R. and Bolden, A.L., Environ. Health Perspect., 2015, vol. 123(7), pp. 643–650. https://doi.org/10.1289/ehp.1408989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Salum, M.L., Iguchi, D., Arza, C.R., Han, L., Ishida, H., and Froimowicz, P., ACS Sustain. Chem. Eng., 2018, vol. 6(10), pp. 13096–13106. https://doi.org/10.1021/acssuschemeng.8b02641

    Article  CAS  Google Scholar 

  8. Prabunathan, P., Vasanthakumar, A., Manoj, M., Hariharan, A., and Alagar, M., J. Polym. Res., 2020, vol. 27(3). https://doi.org/10.1007/s10965-020-2022-z

    Article  Google Scholar 

  9. Hariharan, A., Srinivasan, K., Murthy, C., and Alagar, M., Ind. Eng. Chem. Res., 2017, vol. 56 (33), pp. 9347–9354. https://doi.org/10.1021/acs.iecr.7b01816

    Article  CAS  Google Scholar 

  10. Takeichi, T., Kawauchi, T., and Agag, T., Polym. J., 2008, vol. 40(12), pp. 1121–1131. https://doi.org/10.1295/polymj.PJ2008072

    Article  CAS  Google Scholar 

  11. Ishida, H. and Krus, C.M., Macromolecules, 1998, vol. 31(8), pp. 2409–2418. https://doi.org/10.1021/ma970156s

    Article  CAS  Google Scholar 

  12. Kiskan, B., Ghosh, N.N., and Yagci, Y., Polym. Int., 2011, vol. 60(2), pp. 167–177. https://doi.org/10.1002/pi.2961

    Article  CAS  Google Scholar 

  13. Zhang, W., Lu, X., Xin, Z., and Zhou, C., Nanoscale, 2015, vol. 7(46), pp. 19476–19483. https://doi.org/10.1039/C5NR06425B

    Article  CAS  PubMed  Google Scholar 

  14. Liu, C.T., Su, P.K., Hu, C.C., Lai, J.Y., and Liu, Y.L., J. Memb. Sci., 2018, vol. 546, pp. 100–109. https://doi.org/10.1016/j.memsci.2017.10.018

    Article  CAS  Google Scholar 

  15. Li, Y., Yu, Q., Yin, X., Xu, J., Cai, Y., Han, L., Huang, H., Zhou, Y., Tan, Y., Wang, L., and Wang, H., Cellulose, 2018, vol. 25(11), pp. 6691–6704. https://doi.org/10.1007/s10570-018-2024-8

    Article  CAS  Google Scholar 

  16. Manickam, M., Pichaimani, P., Arumugam, H., and Muthukaruppan, A., Ind. Eng. Chem. Res., 2019, vol. 58(47), pp. 21419–21430. https://doi.org/10.1021/acs.iecr.9b03440

    Article  CAS  Google Scholar 

  17. Hosseini, M., Mertens, S.F.L., Ghorbani, M., and Arshadi, M.R., Mater. Chem. Phys., 2003, vol. 78(3), pp. 800–808. https://doi.org/10.1016/S0254-0584(02)00390-5

    Article  CAS  Google Scholar 

  18. Subramanyam, N.C., Sheshadri, B.S., and Mayanna, S.M., Corros. Sci., 1993, vol. 34(4), pp. 563–571. https://doi.org/10.1016/0010-938X(93)90272-I

    Article  CAS  Google Scholar 

  19. Shi, X., Nguyen, T.A., Suo, Z., Liu, Y., and Avci, R., Surf. Coatings Technol., 2009, vol. 204(3), pp. 237–245. https://doi.org/10.1016/j.surfcoat.2009.06.048

    Article  CAS  Google Scholar 

  20. Lu, X., Liu, Y., Zhou, C., Zhang, W., and Xin, Z., RSC Adv., 2016, vol. 6(7), pp. 5805–5811. https://doi.org/10.1039/C5RA22980D

    Article  CAS  Google Scholar 

  21. Zhou, C., Lu, X., Xin, Z., Liu, J., and Zhang, Y., Prog. Org. Coatings, 2013, vol.76(9), pp. 1178–1183. https://doi.org/10.1016/j.porgcoat.2013.03.013

    Article  CAS  Google Scholar 

  22. Manoj, M., Kumaravel, A., Mangalam, R., Prabunathan, P., Hariharan, A., and Alagar, M., J. Coatings Technol. Res., 2020, vol. 17(4), pp. 921–935. https://doi.org/10.1007/s11998-019-00312-4

    Article  CAS  Google Scholar 

  23. Li, P.Z., Liu, Z.Q., Tetrahedron, 2013, vol. 69(46), pp.9898–9905. https://doi.org/10.1016/j.tet.2013.08.053

    Article  PubMed  PubMed Central  Google Scholar 

  24. Thennarasu, P., Prabunathan, P., and Senthilkumar, M., Industrial Textiles, 2017, vol. 47(7), pp. 1609–1625. https://www.fda.gov/food/food-additives-petitions/bisphenol-bpa-use-food-contact-application.

    Article  Google Scholar 

  25. Van Kreelen, D.W. and TeNijenhuis, K., Prop. Polym., 2009.

  26. Vimala, K., Sundarraj, S., Paulpandi, M., Vengatesan, S., and Kannan, S., Process Biochem., 2014, vol. 49(1), pp. 160–172.https://doi.org/10.1016/j.procbio.2013.10.007

    Article  Google Scholar 

  27. Rios, J.L., Recio, M.C., and Villar, A., J. Ethnopharmacol., 1988, vol. 23(2–3), pp. 127–149. https://doi.org/10.1016/0378-8741(88)90001-3

    Article  CAS  PubMed  Google Scholar 

  28. Ahmed, T., Baidya, S., Sharma, B.C., Malek, M., Das, K.K., Acharjee, M., Munshi, S.K., Noor Am. J. Clin. Pathol., 1966, vol. 45(4), pp. 493–496. https://www.fda.gov/food/food-additives-petitions/bisphenol-bpa-use-food-contact-application.

    Article  Google Scholar 

  29. Ning, X. and Ishida, H., J. Polym. Sci., Part A Polym. Chem., 1994, vol. 32(6), pp.1121–1129. https://doi.org/10.1002/pola.1994.080320614

    Article  Google Scholar 

  30. Hung, H.M., Linh, D.K., Chinh, N.T., Duc, L.M., Trung, V.Q., Prog. Org. Coatings, 2019, vol. 131, pp. 407–416. https://doi.org/10.1016/j.porgcoat.2019.03.006

    Article  CAS  Google Scholar 

  31. Koga, G.Y., Wolf, W., Schulz, R., Savoie, S., Bolfarini, C., Kiminami, C.S., Botta, W.J., Surf. Coatings Technol., 2019, vol. 357, pp. 993–1003. https://doi.org/10.1016/j.surfcoat.2018.10.101

    Article  CAS  Google Scholar 

  32. Zhou, C., Lu, X., Xin, Z., Liu, J., Corros. Sci., 2013, vol. 70, pp. 145–151. https://doi.org/10.1016/j.corsci.2013.01.023

    Article  CAS  Google Scholar 

  33. Nayak, S.R. and Mohana, K.N.S., Surfaces and Interfaces, 2018, vol. 11, pp. 63–73. https://doi.org/10.1016/j.surfin.2018.03.002

    Article  CAS  Google Scholar 

  34. Zheng, H., Guo, M., Shao, Y., Wang, Y., Liu, B., Meng, G., Corros. Sci., 2018, vol. 139, pp. 1–12. https://doi.org/10.1016/j.corsci.2018.04.036

    Article  CAS  Google Scholar 

  35. Sharifi, Z., Pakshir, M., Amini, A., and Rafiei, R., J. Ind. Eng. Chem., 2019, vol. 74, pp. 41–54. https://doi.org/10.1016/j.jiec.2019.01.043

    Article  CAS  Google Scholar 

  36. Zhang, Y., Shao, Y., Liu, X., Shi, C., Wang, Y., Meng, G., Zeng, X., and Yang, Y., Prog. Org. Coatings, 2017, vol. 111, pp. 240–247. https://www.fda.gov/food/food-additives-petitions/bisphenol-bpa-use-food-contact-application.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge the SIF, VIT-Vellore for providing NMR facility.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. Prabunathan, M. Manoj or M. Sangeetha.

Ethics declarations

The authors have no conflict of interest.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nivinkrishnan, P., Sophia, S.J., Kumaravel, A. et al. Synthesis and Application of Non-Toxic Superhydrophobic Phenyl Substituted Pyrazolidine Based Benzoxazine Coating for Oil-Water Separation and Corrosion Resistance. Russ J Appl Chem 95, 1243–1261 (2022). https://doi.org/10.1134/S1070427222080225

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222080225

Keywords:

Navigation