Skip to main content
Log in

Synthesis and Properties of Thin CuFe2O4 Films

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Thin copper ferrite films were synthesized by solid-phase pyrolysis. The properties of the material obtained were studied in relation to the synthesis temperature. With an increase in the calcination temperature over 800°С, CuFe2O4 spinel films become single-phase with the tetragonal structure. The films obtained consist of nanocrystallites of 20–40 nm size depending on the treatment temperature. The film calcined at 800°С is characterized by the largest piezo response among the materials synthesized. The temperature dependence of the electrical resistance of the materials produced was studied; from resulting data, the activation energy of the electrical conductivity of the materials was calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Kucera, M. and Brom, P., J. Appl. Phys., 2015, vol. 117, no. 17, ID 17B738. https://doi.org/10.1063/1.4918757

    Article  CAS  Google Scholar 

  2. Jiang, C., Wu, L., Wei, W., Dong, C., and Yao, J., Nanoscale Res. Lett., 2014, no. 9, ID 584. https://doi.org/10.1186/1556-276X-9-584

    Article  CAS  Google Scholar 

  3. Kučera, M., Kolinský, V., Višňovský, S., Chvostová, D., Venkataramani, N., Prasad, S., Kulkarni, P.D., and Krishnan, R., J. Magn. Magn. Mater., 2007, vol. 316, no. 2, pp. e688–e691. https://doi.org/10.1016/j.jmmm.2007.03.076

    Article  CAS  Google Scholar 

  4. Manikandan, V., Singh, M., Yadav, B.C., and Denardin, J.C., J. Sci.: Adv. Mater. Devices, 2018, vol. 3, no. 2, pp. 145–150. https://doi.org/10.1016/j.jsamd.2018.03.008

    Article  Google Scholar 

  5. Ham, D., Chang, J., Pathan, S.H., Kim, W.Y., Mane, R.S., Pawar, B.N., Joo, Oh-Sh., Chung, H., Yoon, M.-Y., and Han, S.-H., Curr. Appl. Phys., 2009, vol. 9, pp. 98–100. https://doi.org/10.1016/j.cap.2008.08.042

    Article  Google Scholar 

  6. Nu Li, Y.-N. and Qin, Q.-Z., J. Power Sources, 2005, vol. 142, nos. 1–2, pp. 292–297. https://doi.org/10.1016/j.jpowsour.2004.10.015

    Article  CAS  Google Scholar 

  7. Nawle, A.C., Humbe, A.V., Babrekar, M.K., Deshmukh, S.S., and Jadhav, K.M., J. Alloys Compd., 2017, vol. 695, pp. 1573–1582. https://doi.org/10.1016/j.jallcom.2016.10.301

    Article  CAS  Google Scholar 

  8. Nedkov, I., Merodiiska, T., Milenova, L., and Koutzarova, T., J. Magn. Magn. Mater., 2000, vol. 211, nos. 1–3, pp. 296–300. https://doi.org/10.1016/s0304-8853(99)00750-7

    Article  CAS  Google Scholar 

  9. Trubnikov, I.L. and Zubkov, A.A., Izv. Vyssh. Uchebn. Zaved., Sev.-Kavk. Reg., Ser.: Estestv. Nauki, 2009, no. 3 (151), pp. 74–76.

    Google Scholar 

  10. Bayan, E.M., Storozhenko, V.Y., and Bunin, M.A., Mater. Lett., 2021, vol. 302, no. 1, ID 130385. https://doi.org/10.1016/j.matlet.2021.130385

    Article  CAS  Google Scholar 

  11. Gunjakar, J.L., More, A.M., Gurav, K.V., and Lokhande, C.D., Appl. Surf. Sci., 2008, vol. 254, no. 18, pp. 5844–5848. https://doi.org/10.1016/j.apsusc.2008.03.065

    Article  CAS  Google Scholar 

  12. Chavan, A.R., Kounsalye, J.S., Chilwar, R.R., Kale, S.B., and Jadhav, K.M., J. Alloys Compd., 2018, vol. 769, pp. 1132–1145. https://doi.org/10.1016/j.jallcom.2018.08.061

    Article  CAS  Google Scholar 

  13. Deki, S., Miki, H., Sakamoto, M., and Mizuhata, M., Chem. Lett., 2007, vol. 36, no. 4, pp. 518–519. https://doi.org/10.1246/cl.2007.518

    Article  CAS  Google Scholar 

  14. Lokhande, C.D., Kulkarni, S.S., Mane, R.S., and Han, S.-H., J. Magn. Magn. Mater., 2007, vol. 313, no. 1, pp. 69–75. https://doi.org/10.1016/j.jmmm.2006.12.005

    Article  CAS  Google Scholar 

  15. Lokhande, C.D., Kulkarni, S.S., Mane, R.S., and Han, S.-H., J. Cryst. Growth, 2007, vol. 303, no. 2, pp. 387–390. https://doi.org/10.1016/j.jcrysgro.2006.12.063

    Article  CAS  Google Scholar 

Download references

Funding

Studies by scanning electron microscopy, atomic force microscopy, Kelvin probe force microscopy, and piezo response force microscopy were supported by the Ministry of Science and Higher Education of the Russian Federation, government assignment in the field of research N FENW-2022-0001.

Author information

Authors and Affiliations

Authors

Contributions

V.Yu. Popova and E.M. Bayan: synthesis of film materials and study of the phase composition; V.V. Petrov, I.A. Gulyaeva, and A.P. Ivanishcheva: study of the film surface by scanning electron microscopy, atomic force microscopy, Kelvin probe force microscopy, and piezo response force microscopy and electrophysical measurements; M.I. Tolstunov: thermal gravimetric and calorimetric analysis.

Corresponding author

Correspondence to V. Yu. Popova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 8, pp. 994–1000, August, 2022 https://doi.org/10.31857/S0044461822080059

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popova, V.Y., Petrov, V.V., Gulyaeva, I.A. et al. Synthesis and Properties of Thin CuFe2O4 Films. Russ J Appl Chem 95, 1129–1135 (2022). https://doi.org/10.1134/S1070427222080067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222080067

Keywords:

Navigation