Skip to main content
Log in

Catalysts for Carbonylation of Alcohols to Obtain Carboxylic Acids and Esters

  • Reviews
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Carbonylation of alcohols with CO is one of synthetic routes to carboxylic acids and esters, which are demanded by chemical and pharmaceutical industry. The existing commercial processes for methanol carbonylation under the conditions of homogeneous catalysis with rhodium (Monsanto process) and iridium (Cativa process) compounds involve the addition of corrosion-active iodides. The development of catalysts that desirably do not contain expensive platinum metals and preserve the activity in a large number of recycles is topical from the economical viewpoint. The review systematizes the results of studies performed since 2011 on carbonylation of various alcohols with СО in the presence of novel homogeneous and heterogeneous catalysts. The majority of studies deal with the methanol carbonylation to obtain acetic acid and methyl acetate. To this end, novel homogeneous rhodium–ruthenium and iridium catalysts, heterogeneous catalysts containing Ir, Rh, Cu, Ni, and Re on various supports, and a zeolite catalyst containing no supported metals have been suggested. The ethanol carbonylation to obtain propanoic acid and ethyl propanoate was performed in the presence of homogeneous rhodium and nickel catalysts and of heterogeneous catalysts containing Rh. The carbonylation of other saturated aliphatic and alicyclic alcohols to obtain the corresponding carboxylic acids and esters was performed using homogeneous nickel catalytic systems. The carbonylation of saturated aliphatic polyhydric alcohols to obtain monocarboxylic acids was performed using homogeneous rhodium and iridium catalysts. In some cases, the authors were able to perform carbonylation of alcohols without iodide additions. Homogeneous and heterogeneous palladium catalysts were suggested for preparing unsaturated carboxylic acids and esters by carbonylation of allyl alcohols. Homogeneous nickel and palladium catalytic systems were developed for the synthesis of aryl-substituted carboxylic acids and esters by carbonylation of aromatic alcohols. The carbonylation of propargyl alcohols was performed under the conditions of homogeneous catalysis with palladium systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Chorkendorff, I. and Niemantsverdriet, J.W., Concepts of Modern Catalysis and Kinetics, New York: Wiley–VCH, 2007.

    Google Scholar 

  2. Nasr Allah, T., Ponsard, L., Nicolas, E., and Cantat, T., Green Chem., 2021, vol. 23, no. 2, pp. 723–739. https://doi.org/10.1039/D0GC02343D

    Article  CAS  Google Scholar 

  3. Zoeller, J.R. and Paul, N., Org. Process Res. Dev., 2016, vol. 20, no. 6, pp. 1016–1025. https://doi.org/10.1021/acs.oprd.6b00081

    Article  CAS  Google Scholar 

  4. Budiman, A.W., Nam, J.S., Park, J.H., Mukti, R.I., Chang, T.S., Bae, J.W., and Choi, M.J., Catal. Surv. Asia, 2016, vol. 20, no. 3, pp. 173–193. https://doi.org/10.1007/s10563-016-9215-9

    Article  CAS  Google Scholar 

  5. Kalck, P., Le, C., and Serp, B.P., Coord. Chem. Rev., 2020, vol. 402, ID 213078. https://doi.org/10.1016/j.ccr.2019.213078

    Article  CAS  Google Scholar 

  6. Ren, Z., Lyu, Y., Song, X., and Ding, Y., Appl. Catal. A, 2020, vol. 595, 117488. https://doi.org/10.1016/j.apcata.2020.117488

    Article  CAS  Google Scholar 

  7. Zhang, D., Yang, G., Zhao, Y., Shao, S., Zhu, G., Liu, P., Liu, J., Hu, X., and Zhang, Z., Catal. Sci. Technol., 2020, vol. 10, pp. 6045–6049. https://doi.org/10.1039/D0CY00054J

    Article  CAS  Google Scholar 

  8. Feng, S., Song, X., Ren, Z., and Ding, Y., Ind. Eng. Chem. Res., 2019, vol. 58, no. 12, pp. 4755–4763. https://doi.org/10.1021/acs.iecr.8b05402

    Article  CAS  Google Scholar 

  9. Qi, J., Finzel, J., Robatjazi, H., Xu, M., Hoffman, A.S., Bare, S.R., Pan, X., and Christopher, P., J. Am. Chem. Soc., 2020, vol. 142, no. 33, pp. 14178–14189. https://doi.org/10.1021/jacs.0c05026

    Article  CAS  PubMed  Google Scholar 

  10. Qi, J. and Christopher, P., Ind. Eng. Chem. Res., 2019, vol. 58, no. 28, pp. 12632–12641. https://doi.org/10.1021/acs.iecr.9b02289

    Article  CAS  Google Scholar 

  11. Ren, Z., Lyu, Y., Feng, S., Song, X., and Ding, Y., Mol. Catal., 2017, vol. 442, pp. 83–88. https://doi.org/10.1016/j.mcat.2017.09.007

    Article  CAS  Google Scholar 

  12. Ni, Y., Shi, L., Liu, H., Zhang, W., Liu, Y., Zhu, W., and Liu, Z., Catal. Sci. Technol., 2017, vol. 7, no. 20, pp. 4818–4822. https://doi.org/10.1039/C7CY01621B

    Article  Google Scholar 

  13. Peng, J.-B., Wu, F.-P., and Wu, X.-F., Chem. Rev., 2019, vol. 119, no. 4, pp. 2090–2127. https://doi.org/10.1021/acs.chemrev.8b00068

    Article  CAS  PubMed  Google Scholar 

  14. Dingwall, L.D., Lee, A.F., Lynam, J.M., Wilson, K., Olivi, L., Deeley, J.M.S., Gaemers, S., and Sunley, G.J., ACS Catal., 2012, vol. 2, no. 7, pp. 1368–1376. https://doi.org/10.1021/cs3000528

    Article  CAS  Google Scholar 

  15. Sheldon, R.A., Chemicals from Synthesis Gas, Dordrecht: Reidel, 1983.

    Book  Google Scholar 

  16. Yan, Yu.B. and Nefedov, B.K., Sintezy na osnove oksidov ugleroda (Synthesese Based on Carbon Oxides), Moscow: Khimiya, 1987.

    Google Scholar 

  17. Zhang, S., Ji, W., Feng, N., Lan, L., Li, Y., and Ma, Y., Materials, 2020, vol. 13, no. 18, pp. 4026–4037. https://doi.org/10.3390/ma13184026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Feng, S., Lin, X., Song, X., Liu, Y., Jiang, Z., and Ding, Y., J. Catal., 2019, vol. 377, pp. 400–408. https://doi.org/10.1016/j.jcat.2019.06.050

    Article  CAS  Google Scholar 

  19. Gregor, L.C., Grajeda, J., Kita, M.R., White, P.S., Vetter, A.J., and Miller, A.J.M., Organometallics, 2016, vol. 35, no. 17, pp. 3074–3086. https://doi.org/10.1021/acs.organomet.6b00607

    Article  CAS  Google Scholar 

  20. Gregor, L.C., Grajeda, J., White, P.S., Vetter, A.J., and Miller, A.J.M., Catal. Sci. Technol., 2018, vol. 8, no. 12, pp. 3133–3143. https://doi.org/10.1039/C8CY00328A

    Article  CAS  Google Scholar 

  21. Yoo, C. and Miller, A.J.M., J. Am. Chem. Soc., 2021, vol. 143, no. 32, pp. 12633–12643. https://doi.org/10.1021/jacs.1c05185

    Article  CAS  PubMed  Google Scholar 

  22. Patent US 9421522 B2, Publ. 2016.

  23. Guo, J., Liu, H., Li, D., Wang, J., Djitcheu, X., He, D., and Zhang, Q., RSC Adv., 2022, vol. 12, pp. 9373–9394. https://doi.org/10.1039/D2RA00657J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Golubev, K.B., Yashina, O.V., Batova, T.I., Kolesnichenko, N.V., and Ezhova, N.N., Petrol. Chem., 2021, vol. 61, no. 5, pp. 663–669. https://doi.org/10.1134/S0965544121040058

    Article  CAS  Google Scholar 

  25. Qiao, B., Wang, A., Yang, X., Allard, L.F., Jiang, Z., Cui, Y., Liu, J., Li, J., and Zhang, T., Nature Chem., 2011, vol. 3, pp. 634–641. https://doi.org/10.1038/nchem.1095

    Article  CAS  Google Scholar 

  26. Hensley, A.J., Zhang, J., Vinçon, I., Hernandez, X.P., Tranca, D., Seifert, G., McEwen, J.-S., and Wang, Y., J. Catal., 2018, vol. 361, pp. 414–422. https://doi.org/10.1016/j.jcat.2018.02.022

    Article  CAS  Google Scholar 

  27. Ren, Z., Lyu, Y., Feng, S., Song, X., and Ding, Y., Chin. J. Catal., 2018, vol. 39, no. 6, pp. 1060–1069. https://doi.org/10.1016/S1872-2067(18)63019-0

    Article  CAS  Google Scholar 

  28. Feng, S., Lin, X., Song, X., Liu, Y., Jiang, Z., Hemberger, P., Bodi, A., and Ding, Y., J. Catal., 2020, vol. 381, pp. 193–203. https://doi.org/10.1016/j.jcat.2019.10.032

    Article  CAS  Google Scholar 

  29. Patent US 9387469 B2, Publ. 2016.

  30. Ren, Z., Liu, Y., Lyu, Y., Song, X., Zheng, C., Feng, S., Jiang, Z., and Ding, Y., J. Catal., 2019, vol. 369, pp. 249–256. https://doi.org/10.1016/j.jcat.2018.11.015

    Article  CAS  Google Scholar 

  31. Ivko, S.A., James, A.M., Derry, M.J., Dawson, R., and Haynes, A., Catal. Sci. Technol., 2021, vol. 12, no. 2, pp. 664–673. https://doi.org/10.1039/D1CY01989A

    Article  Google Scholar 

  32. Park, K., Lim, S., Baik, J.H., Kim, H., Jung, K.D., and Yoon, S., Catal. Sci. Technol., 2018, vol. 8, no. 11, pp. 2894–2900. https://doi.org/10.1039/C8CY00294K

    Article  CAS  Google Scholar 

  33. Nam, J.S., Kim, A.R., Kim, D.M., Chang, T.S., Kim, B.S., and Bae, J.W., Catal. Commun., 2017, vol. 99, pp. 141–145. https://doi.org/10.1016/j.catcom.2017.06.007

    Article  CAS  Google Scholar 

  34. Kim, D.M., Kim, A.R., Chang, T.S., Koo, H.M., Kim, J.K., Han, G.Y., Shin, C.H., and Bae, J.W., Appl. Catal. A, 2019, vol. 585, 117209. https://doi.org/10.1016/j.apcata.2019.117209

    Article  Google Scholar 

  35. Shang, W., Gao, M., Chai, Y., Wu, G., Guan, N., and Li, L., ACS Catal., 2021, vol. 11, no. 12, pp. 7249–7256. https://doi.org/10.1021/acscatal.1c00950

    Article  CAS  Google Scholar 

  36. Feng, S., Lin, X., Song, X., Mei, B., Mu, J., Li, J., Liu, Y., Jiang, Z., and Ding, Y., ACS Catal., 2021, vol. 11, no. 2, pp. 682–690. https://doi.org/10.1021/acscatal.0c03933

    Article  CAS  Google Scholar 

  37. Tong, C., Zuo, J., Wen, D., Chen, W., Ye, L., and Yuan, Y., Front. Chem. Sci. Eng., 2021, vol. 15, no. 5, pp. 1075–1087. https://doi.org/10.1007/s11705-020-2019-5

    Article  CAS  Google Scholar 

  38. Meng, X., Yuan, L., Guo, H., Hou, B., Chen, C., Sun, D., Wang, J., and Li, D., Mol. Catal., 2018, vol. 456, pp. 1–9. https://doi.org/10.1016/j.mcat.2018.06.022

    Article  CAS  Google Scholar 

  39. Nie, Q., Zhao, G., Shen, M., Liu, Y., and Lu, Y., Appl. Catal. A, 2021, vol. 623, 118263. https://doi.org/10.1016/j.apcata.2021.118263

    Article  Google Scholar 

  40. Kapran, A.Yu., Chedryk, V.I., Alekseenko, L.M., and Orlyk, S.M., Catal. Lett., 2021, vol. 151, no. 4, pp. 993–1002. https://doi.org/10.1007/s10562-020-03368-9

    Article  CAS  Google Scholar 

  41. Kapran, A.Yu., Borysevych, V.S., Alekseenko, L.M., Chedryk, V.I., and Orlyk, S.M., Theor. Exp. Chem., 2016, vol. 52, no. 4, pp. 233–239. https://doi.org/10.1007/s11237-016-9473-7 

    Article  CAS  Google Scholar 

  42. Dimian, A.C. and Kiss, A.A., Chem. Eng. Technol., 2021, vol. 44, no. 10, pp. 1792–1802. https://doi.org/10.1002/ceat.202100230

    Article  CAS  Google Scholar 

  43. Zhang, X.M., Liu, H.P., Liu, Y.X., Jian, C.G., and Wang, W., Fluid Phase Equilib., 2016, vol. 408, pp. 52–57. https://doi.org/10.1016/j.fluid.2015.08.014

    Article  CAS  Google Scholar 

  44. Hu, Y., Pan, J., Nawaz, M.A., Li, X., and Liu, D., React. Kinet. Mech. Catal., 2020, vol. 129, no. 1, pp. 235–251. https://doi.org/10.1007/s11144-019-01692-9

    Article  CAS  Google Scholar 

  45. Yacob, S., Kilos, B.A., Barton, D.G., and Notestein, J.M., Appl. Catal. A, 2016, vol. 520, pp. 122–131. https://doi.org/10.1016/j.apcata.2016.04.006

    Article  CAS  Google Scholar 

  46. Yacob, S., Park, S., Kilos, B.A., Barton, D.G., and Notestein, J.M., J. Catal., 2015, vol. 325, pp. 1–8. https://doi.org/10.1016/j.jcat.2015.02.004

    Article  CAS  Google Scholar 

  47. Ren, Z., Liu, Y., Lyu, Y., Song, X., Zheng, C., Jiang, Z., and Ding, Y., Chin. J. Catal., 2021, vol. 42, no. 4, pp. 606–617. https://doi.org/10.1016/S1872-2067(20)63676-2

    Article  CAS  Google Scholar 

  48. Xu, L., Hu, Y., Nawaz, M.A., Li, X., and Liu, D., Fuel Process. Technol., 2021, vol. 213, 106716. https://doi.org/10.1016/j.fuproc.2020.106716

    Article  Google Scholar 

  49. Sabater, S., Menche, M., Ghosh, T., Krieg, S., Rück, K.S.L., Paciello, R., Schäfer, A., Comba, P., Hashmi, A.S.K., and Schaub, T., Organometallics, 2020, vol. 39, no. 6, pp. 870–880. https://doi.org/10.1021/acs.organomet.0c00082

    Article  CAS  Google Scholar 

  50. Li, H., Na, J., Cong, H., Wu, L., Zhao, L., Li, X., and Gao, X., Ind. Eng. Chem. Res., 2020, vol. 59, no. 13, pp. 6090–6101. https://doi.org/10.1021/acs.iecr.9b06505

    Article  CAS  Google Scholar 

  51. Xing, Z., Gao, Y., Ding, H., Wang, X., Li, L., and Zhou, H., Chin. J. Chem. Eng., 2018, vol. 26, pp. 560–565. https://doi.org/10.1016/j.cjche.2017.10.020

    Article  CAS  Google Scholar 

  52. Pan, J., Li, X., Zhang, W., Cui, W., Zhou, Z., and Liu, D., J. Chem. Thermodyn., 2019, vol. 132, pp. 23–28. https://doi.org/10.1016/j.jct.2018.12.023

    Article  CAS  Google Scholar 

  53. Lapidus, A.L. and Pirozhkov, S.D., Russ. Chem. Rev., 1989, vol. 58, no. 2, pp. 117–138. https://doi.org/10.1070/RC1989v058n02ABEH003430 

    Article  Google Scholar 

  54. Kiss, G., Chem. Rev., 2001, vol. 101, no. 11, pp. 3435–3456. https://doi.org/10.1021/cr010328q

    Article  CAS  PubMed  Google Scholar 

  55. Sevostyanova, N.T. and Batashev, S.A., Russ. J. Phys. Chem. B, 2018, vol. 12, pp. 593–594. https://doi.org/10.1134/S1990793118030296 

    Article  CAS  Google Scholar 

  56. Aver’yanov, V.A., Sevost’yanova, N.T., and Batashev, S.A., Petrol. Chem., 2008, vol. 48, no. 4, pp. 287–295. https://doi.org/10.1134/S0965544108040063 

    Article  Google Scholar 

  57. Kelkar, A.A., Ubale, R.S., and Chaudhari, R.V., J. Catal., 1992, vol. 136, pp. 605–608. https://doi.org/10.1016/0021-9517(92)90090-5

    Article  CAS  Google Scholar 

  58. Ubale, R.S., Kelkar, A.A., and Chaudhari, R.V., J. Mol. Catal. A: Chemical, 1997, vol. 118, pp. 9–19. https://doi.org/10.1016/S1381-1169(96)00136-7

    Article  CAS  Google Scholar 

  59. Rizkalla, N., ACS Symp. Ser., 1987, vol. 328, pp. 61–76. https://doi.org/10.1021/bk-1987-0328.ch005

    Article  CAS  Google Scholar 

  60. Kong, P.S., Aroua, M.K., and Daud, W.M.A.W., Renew. Sustain. Energy Rev., 2016, vol. 63, pp. 533–555. https://doi.org/10.1016/j.rser.2016.05.054

    Article  CAS  Google Scholar 

  61. Coskun, T., Conifer, C.M., Stevenson, L.C., and Britovsek, G.J., Chem. Eur. J., 2013, vol. 19, no. 21, pp. 6840–6844. https://doi.org/10.1002/chem.201203069

    Article  CAS  PubMed  Google Scholar 

  62. Molla, R.A., Ghosh, K., Roy, A.S., and Islam, Sk.M., J. Mol. Catal. A: Chemical, 2015, vol. 396, pp. 268–274. https://doi.org/10.1016/j.molcata.2014.09.041

    Article  CAS  Google Scholar 

  63. Padmanaban, S., Jiang, J., and Yoon, S., Organometallics, 2020, vol. 39, no. 10, pp. 1881–1886. https://doi.org/10.1021/acs.organomet.0c00117

    Article  CAS  Google Scholar 

  64. Liu, Q., Wu, L., Jiao, H., Fang, X., Jackstell, R., and Beller, M., Angew. Chem. Int. Ed., 2013, vol. 52, no. 31, pp. 8064–8068. https://doi.org/10.1002/anie.201303850

    Article  CAS  Google Scholar 

  65. Li, Y., Wang, Z., and Wu, X.-F., Green Chem., 2018, vol. 20, no. 5, pp. 969–972. https://doi.org/10.1039/C7GC03619A

    Article  CAS  Google Scholar 

  66. Yuan, Y., Jia, M., Zhang, W., and Ma, S., Chem. Commun., 2019, vol. 55, pp. 7938–7941. https://doi.org/10.1039/C9CC03262B

    Article  CAS  Google Scholar 

  67. Chen, G., Fu, C., and Ma, S., Org. Lett., 2009, vol. 11, no. 13, pp. 2900–2903. https://doi.org/10.1021/ol9009046

    Article  CAS  PubMed  Google Scholar 

  68. Pan, S., Huang, Y., Xu, X.-H., and Qing, F.-L., Org. Lett., 2017, vol. 19, no. 17, pp. 4624–4627. https://doi.org/10.1021/acs.orglett.7b02249

    Article  CAS  PubMed  Google Scholar 

  69. Zhang, W., Huang, C., Yuan, Y., and Ma, S., Chem. Commun., 2017, vol. 53, pp. 12430–12433. https://doi.org/10.1039/C7CC06866B

    Article  CAS  Google Scholar 

  70. Zheng, W.-F., Zhang, W., Huang, J., Yu, Y., Qian, H., and Ma, S., Org. Chem. Front., 2018, vol. 5, no. 12, pp. 1900–1904. https://doi.org/10.1039/C8QO00318A

    Article  CAS  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Science Foundation, project no. 22-23-00102, https://rscf.ru/project/22-23-00102/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. T. Sevostyanova.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 8, pp. 947–970, August, 2022 https://doi.org/10.31857/S0044461822080011

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sevostyanova, N.T., Batashev, S.A. Catalysts for Carbonylation of Alcohols to Obtain Carboxylic Acids and Esters. Russ J Appl Chem 95, 1085–1106 (2022). https://doi.org/10.1134/S107042722208002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042722208002X

Keywords:

Navigation