Skip to main content
Log in

Pyrolysis of Crumb Tire Rubber Obtained from Waste Largesized Tires of Trucks

  • Various Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Pyrolysis of various fractions of crumb rubber (with particle sizes of 0–1, 1–3, 2–3.5, and 2–4 mm) obtained from the waste largesized tires was studied in the temperature range of 550–700°C and at atmospheric pressure. It is shown that in the temperature range under study, the particle size of crumb tire rubber has only an insignificant effect on the distribution of its pyrolysis products, which consist of pyrolysis gas, pyrolysis liquid, and solid carbon residue. Pyrolysis gas is a mixture of predominantly light hydrocarbons of composition C1–C4 and hydrogen, the concentration of which increases with a rise in the heat treatment temperature; pyrolysis gas can be utilized as a fuel of the high heating value (HHV), and can also serve as a raw material for hydrogen production. The pyrolysis liquid is a mixture of alicyclic, aromatic, and linear hydrocarbons of С8–С17 composition with a rather high content of value-added products, such as limonene (up to ~35.5 wt %) and cymene (up to ~14.5 wt %); after their separation, the pyrolysis liquid can be used as heating oil or as a raw material for the production of motor fuels and valuable chemical compounds. The solid carbon residue has a relatively developed mesoporous structure (with a predominant pore size in the range of ~200–400 Å) and can be used as a raw material for the production of carbon sorbents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Scheme 1.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Sienkiewicz, M., Kucinska-Lipka, J., Janik, H., and Balas, A., Waste Manage, 2012, vol. 22, no. 10, pp. 1742–1751. https://doi.org/10.1016/j.wasman.2012.05.010

    Article  CAS  Google Scholar 

  2. Ivanov, K.S. and Surikova, T.B., Utilizatsiya iznoshennykh avtomobil’nykh shin (Disposal of Used Car Tires). https://www.waste.ru/modules/section/item.php?itemid=302.

  3. Zakharyan, E.M. and Maksimov, A.L., Russ. J. Appl. Chem., 2021, vol. 94, no. 10, pp. 1351–1388. https://doi.org/10.1134/S1070427221100013

    Article  CAS  Google Scholar 

  4. Martínez, J.D., Puy, N., Murillo, R., García, T., Navarro, M.V., and Mastral, A.M., Renew. Sust. Energ. Rev., 2013, vol. 23, pp. 179–213. https://doi.org/10.1016/j.rser.2013.02.038

    Article  CAS  Google Scholar 

  5. Parthasarathy, P., Choi, H.S., Park, H.C., Hwang, J.G., Yoo H.S., Lee, B.-K., and Upadhyay, M., Korean J. Chem. Eng., 2016, vol. 33, no. 8, pp. 2268–2286. https://doi.org/10.1007/s11814-016-0126-2

    Article  CAS  Google Scholar 

  6. Czajczyńska, D., Krzyzyńska, R., Jouhara, H., and Spencer, N., Energy, 2017, vol. 134, pp. 1121–1131. https://doi.org/10.1016/j.energy.2017.05.042

    Article  CAS  Google Scholar 

  7. Labaki, M. and Jeguirim, M., Environ Sci. Pollut. Res., 2017, vol. 24, pp. 9962–9992. https://doi.org/10.1007/s11356-016-7780-0

    Article  CAS  Google Scholar 

  8. Oboirien, B.O. and North, B.C., J. Environ. Chem. Eng., 2017, vol. 5, pp. 5169–5178. https://doi.org/10.1016/j.jece.2017.09.057

    Article  CAS  Google Scholar 

  9. Machin, E.B., Pedroso, D.T., and De Carvalho, Jr., J.A., Renew. Sust. Energ. Rev., 2017, vol. 68, pp. 306–315. https://doi.org/10.1016/j.rser.2016.09.110

    Article  Google Scholar 

  10. Saleh, T.A. and Gupta, V.K., Adv. Colloid Interface Sci., 2014, vol. 211, pp. 93–101. https://doi.org/10.1016/j.cis.2014.06.006

    Article  CAS  Google Scholar 

  11. Petrenko, T.V., Tverdye bytovye otkhody (Municipal Solid Waste), 2007, no. 4, pp. 6–9.

    Google Scholar 

  12. Novichkov, Yu.A., Petrenko, T.V., and Bratchun, V.I., Vestn. Khar’kov. Nats. Avtomobil’no-dorozhnogo Univ., 2005, no. 29, pp. 68–70.

    Google Scholar 

  13. Rodriguez, I.M., Laresgoiti, M.F., Cabrero, M.A., Torres, A., Chomón, M.J., and Caballero, M., Fuel Process. Technol., 2001, vol. 72, no. 1, pp. 9–22. https://doi.org/10.1016/S0378-3820(01)00174-6

    Article  CAS  Google Scholar 

  14. Laresgoiti, M.F., Caballero, B.M., De Marco, I., Torres, A., Cabrero, M.A., and Chomón, M.J., J. Anal. Appl. Pyrol., 2004, vol. 71, no. 2, pp. 917–934. https://doi.org/10.1016/j.jaap.2003.12.003

    Article  CAS  Google Scholar 

  15. Berrueco, C., Esperanza, E., Mastral, F.J., Ceamanos, J., and García-Bacaicoa, P., J. Anal. Appl. Pyrol., 2005, vol. 74, no. 1–2, pp. 245–253. https://doi.org/10.1016/j.jaap.2004.10.007

    Article  CAS  Google Scholar 

  16. González, J.F., Encinar, J.M., Canito, J.L., and Rodríguez, J.J., J. Anal. Appl. Pyrol., 2001, vol. 58–59, pp. 667–683. https://doi.org/10.1016/S0165-2370(00)00201-1

    Article  Google Scholar 

  17. Nisar, J., Ali, G., Ullah, N., Awan I., A., Iqbal, M., Shah, A., Sirajuddin, Sayed, M., Mahmood, T., and Khan, M.S., J. Environ. Chem. Eng., 2018, vol. 6, no. 2, pp. 3469–3473. https://doi.org/10.1016/j.jece.2018.05.021

    Article  CAS  Google Scholar 

  18. Xu, F., Wang, B., Yang, D., Ming, X., Jiang, Y., Hao, J., Qiao, Y., and Tian, Y., Energ. Convers. Manage, 2018, vol. 175, pp. 288–297. https://doi.org/10.1016/j.enconman.2018.09.013

    Article  CAS  Google Scholar 

  19. Kwon, E. and Castaldi, M.J., Environ. Sci. Technol., 2009, vol. 43, no. 15, pp. 5996–6002. https://doi.org/10.1021/es900564b

    Article  CAS  Google Scholar 

  20. Singh, R.K., Ruj, B., Jana, A., Mondal, S., Jana, B., Sadhukhan, A.K., and Gupta, P., J. Anal. Appl. Pyrol., 2018, vol. 135, pp. 379–389. https://doi.org/10.1016/j.jaap.2018.08.011

    Article  CAS  Google Scholar 

  21. Li, D., Lei, S., Lin, F., Zhong, L., Ma, W., and Chen, G., Energy, 2020, vol. 213, 119038. https://doi.org/10.1016/j.energy.2020.119038

    Article  Google Scholar 

  22. Speight, J.G., Handbook of Coal Analysis, New York: John Wiley & Sons. Inc., 2015.

    Google Scholar 

  23. Teploenergetika i teplotekhnika, Kn. , Teoreticheskie osnovy teplotekhniki. Teplotekhnicheskii eksperiment: Sprav. (Thermal Power Engineering and Heat Engineering. Book 2. Theoretical Foundations of Heat Engineering. Thermotechnical Experiment: Handbook), Grigor’ev, V.A. and Zorin, V.M., Eds., Moscow: Energoatomizdat, 1988.

    Google Scholar 

  24. Cunliffe, A.M. and Williams, P.T., J. Anal. Appl. Pyrol., 1998, vol. 44, no. 2, pp. 131–152. https://doi.org/10.1016/S0165-2370(97)00085-5

    Article  CAS  Google Scholar 

  25. Kyari, M., Cunliffe, A., and Williams, P.T., Energy & Fuels, 2005, vol. 19, no. 3, pp. 1165–1173. https://doi.org/10.1021/ef049686x

    Article  CAS  Google Scholar 

  26. Islam, M.R., Haniu, H., and Beg, M.R.A., Fuel., 2008, vol. 87, nos. 13–14, pp. 3112–3122. https://doi.org/10.1016/j.fuel.2008.04.036

    Article  CAS  Google Scholar 

  27. Fernández A., M., Barriocanal, C., and Alvarez, R., J. Hazard Mater., 2012, vol. 203–204, pp. 236–243. https://doi.org/10.1016/j.jhazmat.2011.12.014

    Article  CAS  Google Scholar 

  28. Chouaya, S., Abbassi, M.A., Younes, R.B., and Zoulalian, A., Russ. J. Appl. Chem., 2018, vol. 91, no. 10, pp. 1603–1611. https://doi.org/10.1134/S1070427218100063

    Article  CAS  Google Scholar 

  29. Williams, P.T., Besler, S., and Taylor, D.T., Fuel, 1990, vol. 69, no. 12, pp. 1474–1482. https://doi.org/10.1016/0016-2361(90)90193-T

    Article  CAS  Google Scholar 

  30. Lucchesi, A. and Maschio, G., Conserv. Recycl., 1983, vol. 6, no. 3, pp. 85–90. https://doi.org/10.1016/0361-3658(83)90033-4

    Article  CAS  Google Scholar 

  31. Januszewicz, K., Kazimierski, P., Kosakowski, W., and Lewandowski, W.M., Materials, 2020, vol. 13, no. 6. ID 1359. https://doi.org/10.3390/ma13061359

    Article  Google Scholar 

  32. Pakdel, H., Roy, C., Aubin, H., Jean, G., and Coulombe, S., Environ. Sci. Technol., 1991, vol. 25, no. 9, pp. 1646–1649. https://doi.org/10.1021/es00021a018

    Article  CAS  Google Scholar 

  33. Zhang, X., Wang, T., Ma, L., and Chang, J., Waste Manage, 2008, vol. 28, no. 11, pp. 2301–2310. https://doi.org/10.1016/j.wasman.2007.10.009

    Article  CAS  Google Scholar 

  34. Ding, K., Zhong, Z., Zhang, B., Song, Z., and Qian, X., Energy & Fuels, 2015, vol. 29, no. 5, pp. 3181–3187. https://doi.org/10.1021/acs.energyfuels.5b00247

    Article  CAS  Google Scholar 

  35. Kheifits, L.A. and Dashunin, V.M., Dushistye veshchestva i drugie produkty dlya parfyumerii (Fragrances and Other Products for Perfumery), Moscow: Khimiya, 1994, pp. 57–110.

    Google Scholar 

  36. Danon, B., Van der Gryp, P., Schwarz, C.E., and Görgens, J.F., J. Anal. Appl. Pyrol., 2015, vol. 112, pp. 1–13. https://doi.org/10.1016/j.jaap.2014.12.025

    Article  CAS  Google Scholar 

  37. Farzad, S., Mandegari, M., and Görgens, J.F., Fuel Process. Technol., 2021, vol. 224. ID 107006. https://doi.org/10.1016/j.fuproc.2021.107006

    Article  Google Scholar 

  38. Gregg, S.J. and Sing, K.S.W., Adsorption, Surface Area, and Porosity, London: Acad. Press Ltd., 1982.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their gratitude to the staff of the Kemerovo Regional Center for Collective Use of the Siberian Branch of the Russian Academy of Sciences (KemTsKP FRC UUH SB RAS) for technical assistance in analyzing the structure and composition of samples of waste rubber products, as well as their heat treatment products.

Funding

The work was supported financially by the Ministry of Education and Science of the Russian Federation in accordance with an additional agreement on the provision of a subsidy from the Federal budget for financial support to implement the state task on the provision of public services (internal no. 075-GZ/X4141/687/3).

Author information

Authors and Affiliations

Authors

Contributions

S.S. Azikhanov: problem statement, research planning, pyrolysis experiments; I.Ya. Petrov: interpretation of the data of FTIR spectroscopy and gas chromatography-mass spectrometry; K.Yu. Ushakov: experiments on pyrolysis, analysis of gaseous products and determination of the heating value of raw materials and pyrolysis products; V.Z. Gorina: technical analysis of raw materials, fractional composition of liquid pyrolysis products, collection of literature data and literature review; A.R. Bogomolov: interpretation of electron microscopy data and adsorption measurements.

Corresponding author

Correspondence to I. Ya. Petrov.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 6, pp. 787–802, July, 2022 https://doi.org/10.31857/S0044461822060123

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azikhanov, S.S., Petrov, I.Y., Ushakov, K.Y. et al. Pyrolysis of Crumb Tire Rubber Obtained from Waste Largesized Tires of Trucks. Russ J Appl Chem 95, 872–886 (2022). https://doi.org/10.1134/S107042722206012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042722206012X

Keywords:

Navigation