Skip to main content
Log in

Low-Temperature Atmospheric-Pressure Plasma-Enhanced Chemical Deposition of Silicon Dioxide Films from Tetraethoxysilane

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Thin films were prepared in the tetraethoxysilane–helium system on silicon plats in atmospheric-pressure dielectric barrier discharge at low temperatures in the interval 50–210°С. The coatings prepared under different conditions (temperature of the substrate, power absorbed in plasma) were characterized. An increase in the temperature of the substrate leads to an increase in the film deposition rate, to a decrease in the film porosity, to an increase in the density, and to a decrease in the content of CH bonds in CH2 and CH3 groups. An increase in the power absorbed in the plasma leads to the formation of films with low density and unsatisfactory dielectric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Baklanov, M., Maex, K., and Green, M., Dielectric Films for Advanced Microelectronics, Wiley, 2007, pp. 341–343.

    Book  Google Scholar 

  2. Janietz, M. and Arnold, T., Surf. Coat.Technol., 2011, vol. 205, pp. S351–S354. https://doi.org/10.1016/j.surfcoat.2011.03.127

    Article  CAS  Google Scholar 

  3. Schäfer, J., Foest, R., Quade, A., Ohl, A., and Weltmann, K.-D., Plasma Process. Polym., 2009, vol. 6, no. S1, pp. S519–S524. https://doi.org/10.1002/ppap.200931103

    Article  CAS  Google Scholar 

  4. Alexandrov, S.E. and Hitchman, M.L., Plasma enhanced chemical vapour deposition, Chemical Vapour Deposition: Precursors, Processes and Applications, Cambridge: Royal Soc. Chem., 2009.

    Google Scholar 

  5. Alexandrov, S.E. and Hitchman, M.L., Chem. Vap. Deposition, 2005, vol. 11, nos. 11–12, pp. 457–468. https://doi.org/10.1002/cvde.200500026

    Article  CAS  Google Scholar 

  6. Hopfe, V. and Sheel, D.W., Plasma Process. Polym., 2007, vol. 4, no. 3, pp. 253–265. https://doi.org/10.1002/ppap.200600202

    Article  CAS  Google Scholar 

  7. Schäfer, J., Hnilica, J., Šperka, J., Quade, A., Kudrle, V., Foest, R., Vodák, J., and Zajίčková, L., Surf. Coat. Technol., 2016, vol. 295, pp. 112–118. https://doi.org/10.1016/j.surfcoat.2015.09.047

    Article  CAS  Google Scholar 

  8. Kim, K.N., Lee, S.M., Mishra, A., and Yeom, G.Y., Thin Solid Films, 2016, vol. 598, pp. 315–334. https://doi.org/10.1016/j.tsf.2015.05.035

    Article  CAS  Google Scholar 

  9. Prat, R., Koh, Y.J., Babukutty, Y., Kogoma, M., Okazaki, S., and Kodama, M., Polymer, 2000, vol. 41, no. 20, pp. 7355–7360. https://doi.org/10.1016/S0032-3861(00)00103-8

    Article  CAS  Google Scholar 

  10. Massines, F., Sarra-Bournet, C., Fanelli, F., Naudé, N., and Gherardi, N., Plasma Process. Polym., 2012, vol. 9, pp. 1041–1073. https://doi.org/10.1002/ppap.201200029

    Article  CAS  Google Scholar 

  11. Massines, F., Gherardi, N., and Steve Martin, A., Surf. Coat.Technol., 2005, vol. 200, nos. 5–6, pp. 1855–1861. https://doi.org/10.1016/j.surfcoat.2005.08.010

    Article  CAS  Google Scholar 

  12. Premkumar, P.A., Starostin, S.A., Vries, H., Paffen, R.M.J., Creatore, M., Eijkemans, T.J., Koenraad, P.M., and Sanden, M.C.M., Plasma Process. Polym., 2009, vol. 6, no. 10, pp. 693–702. https://doi.org/10.1002/ppap.200900033

    Article  CAS  Google Scholar 

  13. Trinh, Q.H., Mokter Hossain, Md., Kim, S.H., and Sun Mok, Y., Heliyon, 2018, vol. 4, no. 1, pp. 1–19. https://doi.org/10.1016/j.heliyon.2018.e00522

    Article  Google Scholar 

  14. Kuo, Y.L. and Chang, K.-H., Surf. Coat. Technol., 2015, vol. 283, pp. 194–200. https://doi.org/10.1016/j.surfcoat.2015.11.004

    Article  CAS  Google Scholar 

  15. Samaei, A. and Chaudhuri, S., Surf. Interfaces, 2020, vol. 21, pp. 1–17. https://doi.org/10.1016/j.surfin.2020.100739

    Article  CAS  Google Scholar 

  16. Topka, K.C., Chliavoras, G.A., Vergnes, H., and Senocq, F., Chem. Eng. Res. Des., 2020, vol. 161, pp. 146–158. https://doi.org/10.1016/j.cherd.2020.07.007

    Article  CAS  Google Scholar 

  17. Topka, K.C., Diallo, B., Samelor, D., Laloo, R., Sadowski, D., Genevois, C., Sauvagec, T., Senocq, F., Vergnes, H., Turq, V., Pellerin, N., Caussa, B., and Vahlas, C., Surf. Coat. Technol., 2021, vol. 407, pp. 1–13. https://doi.org/10.1016/j.surfcoat.2020.126762

    Article  CAS  Google Scholar 

  18. Chemin, J.B., Bulou, S., Baba, K., Fontaine, C., Sindzingre, T., Boscher, N.D., and Choquet, P., Sci. Rep., 2018, vol. 8, no. 1, pp. 1–8. https://doi.org/10.1038/s41598-018-27526-7

    Article  CAS  Google Scholar 

  19. Takizawa, K., Mori, Y., Miyatake, N., and Murata, K., Thin Solid Films, 2008, vol. 516, no. 11, pp. 3605–3609. https://doi.org/10.1016/j.tsf.2007.08.029

    Article  CAS  Google Scholar 

  20. Peña-Rodríguez, O., Manzano-Santamaría, J., Olivares, J., Rivera, A., and Agulló-López, F., Nucl. Instrum. Meth. Phys. Res. B, 2012, vol. 277, pp. 126–130. https://doi.org/10.1016/j.nimb.2011.12.057

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.S. Bil’ performed experiments on plasma-enhanced chemical vapor deposition of films. S.E. Aleksandrov analyzed the optical properties of the layers obtained.

Corresponding author

Correspondence to A. S. Bil’.

Ethics declarations

S.E. Aleksandrov is a member of the Editorial Board of Zhurnal Prikladnoi Khimii/Russian Journal of Applied Chemistry.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 4, pp. 483–489, March, 2022 https://doi.org/10.31857/S0044461822040090

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bil’, A.S., Aleksandrov, S.E. Low-Temperature Atmospheric-Pressure Plasma-Enhanced Chemical Deposition of Silicon Dioxide Films from Tetraethoxysilane. Russ J Appl Chem 95, 544–550 (2022). https://doi.org/10.1134/S1070427222040103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222040103

Keywords:

Navigation