Skip to main content
Log in

Synthesis of Barium Aluminate of Disk-Shaped Morphology Using the Product of Centrifugal Thermal Activation of Gibbsite

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Barium aluminate BaAl2O4 of spinel structure was prepared by hydrothermal treatment at 150°С of a suspension of a gibbsite thermal activation product in an aqueous barium nitrate solution, followed by heat treatment of the precursors obtained. The product composition was studied by X-ray diffraction, thermal, microscopic, adsorption, and chemical analysis methods. Heat treatment of the hydrothermal reaction products at 850°С leads to the formation of single-phase barium aluminate BaAl2O4 with the specific surface area of ~50 m2 g–1 in the form of disk-shaped porous particles forming aggregates. The surface of BaAl2O4 particles is enriched in barium cations, which are relatively uniformly distributed over particles. The procedure allows reduction of the amount of the starting reactants and of the number of preparation steps, and also minimization or complete exclusion of the wash water formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Zhu, Z., Liu, F., and Zhang, W., Mater. Res. Bull., 2015, vol. 64, pp. 68–75. https://doi.org/10.1016/j.materresbull.2014.12.026

    Article  CAS  Google Scholar 

  2. Li, S., Wang, W., Chen, Y., Zhang, L., Guo, J., and Gong, M., Catal. Commun., 2009, vol. 10, pp. 1048–1051. https://doi.org/10.1016/j.catcom.2008.12.064

    Article  CAS  Google Scholar 

  3. Wako, A.H., Dejene, F.B., and Swart, H.C., J. Rare Earths, 2014, vol. 32, pp. 806–811. https://doi.org/10.1016/S1002-0721(14)60145-9

    Article  CAS  Google Scholar 

  4. Maphiri, V.M., Mhlongo, M.R., Hlatshwayo, T.T., Motaung, T.E., Koao, L.F., and Motloung, S.V., Opt. Mater., 2020, vol. 109, ID 110244. https://doi.org/10.1016/j.optmat.2020.110244

    Article  CAS  Google Scholar 

  5. Kim, D.H., Chin, Y.H., Kwak, J.H., Szanyi, J., and Peden, Ch.H.F., Catal. Lett., 2005, vol. 105, pp. 259–268. https://doi.org/10.1007/s10562-005-8700-y

    Article  CAS  Google Scholar 

  6. Yadan, M. and Sharma, Y.C., Energy Conv. Manag., 2019, vol. 198, ID 111795. https://doi.org/10.1016/j.enconman.2019.111795

    Article  CAS  Google Scholar 

  7. Mohapatra, A., Pattanaik, D.P., Anand, S., and Das, R.P., Ceram. Int., 2007, vol. 33, pp. 531–535. https://doi.org/10.1016/j.ceramint.2005.10.019

    Article  CAS  Google Scholar 

  8. Rodehorst, U., Carpenter, M.A., Marion, S., and Henderson, C.M.B., Mineral. Mag., 2003, vol. 67, pp. 989–1013. https://doi.org/10.1180/0026461036750139

    Article  CAS  Google Scholar 

  9. Chen, G.H. and Niu, D., J. Alloys Compd., 2006, vol. 413, pp. 319–322. https://doi.org/10.1016/j.jallcom.2005.07.001

    Article  CAS  Google Scholar 

  10. Abakumov, A.M., Lebedev, O.I., Nistor, L., Tendeloo, G.V., and Amelinckx, S., Phase Trans., 2000, vol. 71, pp. 143–160. https://doi.org/10.1080/01411590008224545

    Article  CAS  Google Scholar 

  11. Zhuzhgov, A.V., Kruglyakov, V.Yu., Suprun, E.A., Protsenko, R.S., and Isupova, L.A., Russ. J. Appl. Chem., 2021, vol. 94, no. 2, pp. 152–161. https://doi.org/10.1134/S107042722102004X 

    Article  CAS  Google Scholar 

  12. Bocanegra, S.A., Guerrero-Ruiz, А., Scelza, O.A., and de Miguel, С.Р., Catal. Ind., 2013, vol. 5, pp. 61–73. https://doi.org/10.1134/S2070050413010030 

    Article  Google Scholar 

  13. Belskaya, O.B., Stepanova, L.N., Gulyaeva, T.I., Golinskii, D.V., Belyi, A.S., and Likholobov, V.A., Kinet. Catal., 2015, vol. 56, no. 5, pp. 655–662. https://doi.org/10.1134/S0023158415050018

    Article  CAS  Google Scholar 

  14. Patent RU 2264589, Publ. 2005.

  15. Tanashev, Yu.Yu., Moroz, E.M., Isupova, L.A., Ivanova, A.S., Litvak, G.S., Amosov, Yu.I., Rudina, N.A., Shmakov, A.N., Stepanov, A.G., Kharina, I.V., Kul’ko, E.V., Danilevich, V.V., Balashov, V.A., Kruglyakov, V.Yu., Zolotarskii, I.A., and Parmon, V.N., Kinet. Catal., 2007, vol. 48, no. 1, pp. 153–161. https://doi.org/10.1134/S002315840701020X 

    Article  CAS  Google Scholar 

  16. Danilevich, V.V., Klimov, O.V., Nadeina, K.A., Gerasimov, E.Yu., Cherepanova, S.V., Vatutina, Yu.V., and Noskov, A.S., Superlat. Microstruct., 2018, vol. 120, pp. 148–160. https://doi.org/10.18412/1816-0387-2021-6-368-381

    Article  CAS  Google Scholar 

  17. Danilevich, V.V., Isupova, L.A., and Parmon, V.N., Clean. Eng. Techn., 2021, vol. 3, ID 100118. https://doi.org/10.1016/j.clet.2021.100118

    Article  Google Scholar 

  18. Buyanov, R.A. and Krivoruchko, O.P., Kinet. Katal., 1976, vol. 17, no. 3, pp. 765–775.

    CAS  Google Scholar 

  19. Ansaree, Md.J. and Upadhyay, S., Proc. Appl. Ceram., 2015, vol. 9, pp. 181–185. https://doi.org/10.2298/PAC1504181A

    Article  CAS  Google Scholar 

Download references

Funding

The study was performed within the framework of the government assignment for the Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences (grant no. 0239-2021-0004).

Author information

Authors and Affiliations

Authors

Contributions

A.V. Zhuzhgov and V.Yu. Kruglyakov: development of the experimental procedure and participation in the sample preparation, analysis of the results, and manuscript preparation; E.A. Suprun: electron microscopic examination of the samples; L.A. Isupova: significant contribution to the idea and design of the study, to the data interpretation, and to the final manuscript preparation.

Corresponding author

Correspondence to A. V. Zhuzhgov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 4, pp. 450–457, March, 2022 https://doi.org/10.31857/S0044461822040053

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuzhgov, A.V., Kruglyakov, V.Y., Suprun, E.A. et al. Synthesis of Barium Aluminate of Disk-Shaped Morphology Using the Product of Centrifugal Thermal Activation of Gibbsite. Russ J Appl Chem 95, 512–518 (2022). https://doi.org/10.1134/S1070427222040061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222040061

Keywords:

Navigation