Skip to main content
Log in

Production of Carbon Dioxide Hydrates Using Frozen Aqueous Solutions of Polyvinyl Alcohol

  • Physicochemical Studies of Systems and Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The kinetics of the formation of carbon dioxide hydrates in frozen aqueous solutions of polyvinyl alcohol was studied. An excess of the factor of water conversion into carbon dioxide hydrate in frozen aqueous solutions of polyvinyl alcohol in comparison with dispersed ice was established. It is shown that the values of the rate and water-to-hydrate conversion factor under static conditions of hydrate formation (without stirring) in frozen aqueous solutions of polyvinyl alcohol can be higher compared to aqueous solutions of surfactants, powder cryogels of polyvinyl alcohol, microdroplet dispersed systems (“dry water”) under comparable conditions of hydrate formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Zhu, Z., Liu, F., and Zhang, W., Mater. Res. Bull., 2015, vol. 64, pp. 68–75. https://doi.org/10.1016/j.materresbull.2014.12.026

    Article  CAS  Google Scholar 

  2. Li, S., Wang, W., Chen, Y., Zhang, L., Guo, J., and Gong, M., Catal. Commun., 2009, vol. 10, pp. 1048–1051. https://doi.org/10.1016/j.catcom.2008.12.064

    Article  CAS  Google Scholar 

  3. Wako, A.H., Dejene, F.B., and Swart, H.C., J. Rare Earths, 2014, vol. 32, pp. 806–811. https://doi.org/10.1016/S1002-0721(14)60145-9

    Article  CAS  Google Scholar 

  4. Maphiri, V.M., Mhlongo, M.R., Hlatshwayo, T.T., Motaung, T.E., Koao, L.F., and Motloung, S.V., Opt. Mater., 2020, vol. 109, ID 110244. https://doi.org/10.1016/j.optmat.2020.110244

    Article  CAS  Google Scholar 

  5. Kim, D.H., Chin, Y.H., Kwak, J.H., Szanyi, J., and Peden, Ch.H.F., Catal. Lett., 2005, vol. 105, pp. 259–268. https://doi.org/10.1007/s10562-005-8700-y

    Article  CAS  Google Scholar 

  6. Yadan, M. and Sharma, Y.C., Energy Conv. Manag., 2019, vol. 198, ID 111795. https://doi.org/10.1016/j.enconman.2019.111795

    Article  CAS  Google Scholar 

  7. Mohapatra, A., Pattanaik, D.P., Anand, S., and Das, R.P., Ceram. Int., 2007, vol. 33, pp. 531–535. https://doi.org/10.1016/j.ceramint.2005.10.019

    Article  CAS  Google Scholar 

  8. Rodehorst, U., Carpenter, M.A., Marion, S., and Henderson, C.M.B., Mineral. Mag., 2003, vol. 67, pp. 989–1013. https://doi.org/10.1180/0026461036750139

    Article  CAS  Google Scholar 

  9. Chen, G.H. and Niu, D., J. Alloys Compd., 2006, vol. 413, pp. 319–322. https://doi.org/10.1016/j.jallcom.2005.07.001

    Article  CAS  Google Scholar 

  10. Abakumov, A.M., Lebedev, O.I., Nistor, L., Tendeloo, G.V., and Amelinckx, S., Phase Trans., 2000, vol. 71, pp. 143–160. https://doi.org/10.1080/01411590008224545

    Article  CAS  Google Scholar 

  11. Zhuzhgov, A.V., Kruglyakov, V.Yu., Suprun, E.A., Protsenko, R.S., and Isupova, L.A., Russ. J. Appl. Chem., 2021, vol. 94, no. 2, pp. 152–161. https://doi.org/10.1134/S107042722102004X 

    Article  CAS  Google Scholar 

  12. Bocanegra, S.A., Guerrero-Ruiz, А., Scelza, O.A., and de Miguel, С.Р., Catal. Ind., 2013, vol. 5, pp. 61–73. https://doi.org/10.1134/S2070050413010030 

    Article  Google Scholar 

  13. Belskaya, O.B., Stepanova, L.N., Gulyaeva, T.I., Golinskii, D.V., Belyi, A.S., and Likholobov, V.A., Kinet. Catal., 2015, vol. 56, no. 5, pp. 655–662. https://doi.org/10.1134/S0023158415050018

    Article  CAS  Google Scholar 

  14. Patent RU 2264589, Publ. 2005.

  15. Tanashev, Yu.Yu., Moroz, E.M., Isupova, L.A., Ivanova, A.S., Litvak, G.S., Amosov, Yu.I., Rudina, N.A., Shmakov, A.N., Stepanov, A.G., Kharina, I.V., Kul’ko, E.V., Danilevich, V.V., Balashov, V.A., Kruglyakov, V.Yu., Zolotarskii, I.A., and Parmon, V.N., Kinet. Catal., 2007, vol. 48, no. 1, pp. 153–161. https://doi.org/10.1134/S002315840701020X 

    Article  CAS  Google Scholar 

  16. Danilevich, V.V., Klimov, O.V., Nadeina, K.A., Gerasimov, E.Yu., Cherepanova, S.V., Vatutina, Yu.V., and Noskov, A.S., Superlat. Microstruct., 2018, vol. 120, pp. 148–160. https://doi.org/10.18412/1816-0387-2021-6-368-381

    Article  CAS  Google Scholar 

  17. Danilevich, V.V., Isupova, L.A., and Parmon, V.N., Clean. Eng. Techn., 2021, vol. 3, ID 100118. https://doi.org/10.1016/j.clet.2021.100118

    Article  Google Scholar 

  18. Buyanov, R.A. and Krivoruchko, O.P., Kinet. Katal., 1976, vol. 17, no. 3, pp. 765–775.

    CAS  Google Scholar 

  19. Ansaree, Md.J. and Upadhyay, S., Proc. Appl. Ceram., 2015, vol. 9, pp. 181–185. https://doi.org/10.2298/PAC1504181A

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by state order no. 121041600040-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Drachuk.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

REFERENCES

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 4, pp. 444–449, March, 2022 https://doi.org/10.31857/S0044461822040041

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drachuk, A.O., Molokitina, N.S., Kibkalo, A.A. et al. Production of Carbon Dioxide Hydrates Using Frozen Aqueous Solutions of Polyvinyl Alcohol. Russ J Appl Chem 95, 506–511 (2022). https://doi.org/10.1134/S107042722204005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042722204005X

Keywords:

Navigation