Skip to main content
Log in

A Highly Selective Cr2O3/nano-ZSM-5 Bifunctional Catalysts for CO2 Hydrogenation to Aromatics

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The direct conversion of CO2 to aromatics is an effective strategy for simultaneously achieving carbon neutrality and its resource utilization. However, it is a great challenge to efficient CO2 conversion to high value-added aromatics due to the chemical inertness and characteristics of multi-path conversion of CO2. In this work, a series of nanosized ZSM-5 zeolites [NZ5(x)] with different acid amount and strength were synthesized by a seed-induced template-free method via changing the initial gel composition. The Cr2O3 nanoparticle was prepared by simple precipitation method. The performance of the Cr2O3/NZ5(x) bifunctional catalysts composed of Cr2O3 and nano-ZSM-5 zeolites with different acidity, and mixed Cr2O3 with NZ5 (50) by different ways in the CO2 hydrogenation reaction was investigated. The Cr2O3/NZ5(50) catalyst with suitable acidity and closest metal-acid site distance exhibit the highest aromatics selectivity of 87.2% among all hydrocarbon products at CO2 single-pass conversion of 13.6%, which is due to the synergistic effect between the acid sites of the nanosized ZSM-5 zeolite and metal sites provide by Cr2O3 with abundant oxygen vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Yu, H., Li, J., Zhang, Y., et al., Angew. Chem. Int. Ed. Engl., 2019, vol. 12, pp. 3880–3884. https://doi.org/10.1002/anie.201813967

    Article  CAS  Google Scholar 

  2. Olah, G.A., Mathew, T., Prakash, G.K., J. Am. Chem. Soc., 2017, vol. 2, pp. 566–570. https://doi.org/10.1021/jacs.6b10230

    Article  CAS  Google Scholar 

  3. Li, S., Xu, Y., Chen, Y., et al., Angew. Chem. Int. Ed. Engl., 2017, vol. 36, pp. 10761–10765. https://doi.org/10.1002/anie.201705002

    Article  CAS  Google Scholar 

  4. Alvarez, A., Bansode, A., Urakawa, A., et al., Chem. Rev., 2017, vol. 14, pp. 9804–9838. https://doi.org/10.1021/acs.chemrev.6b00816

    Article  CAS  Google Scholar 

  5. Phongprueksathat, N., Bansode, A., Toyao, T., et al., RSC Adv., 2021, vol. 24, pp. 14323–14333. https://doi.org/10.1039/d1ra02103f

    Article  CAS  Google Scholar 

  6. Wang, J., Zhang, G., Zhu, J., et al., ACS Catal., 2021, vol. 3, pp. 1406–1423. https://doi.org/10.1021/acscatal.0c03665

    Article  CAS  Google Scholar 

  7. Su, X., Wang, G., Bai, X., et al., Chem. Eng. J., 2016, vol. 293, pp. 365–375. https://doi.org/10.1016/j.cej.2016.02.088

    Article  CAS  Google Scholar 

  8. Wang, X., Yang, G., Zhang, J., et al., Chem. Commun., 2016, vol. 46, pp. 7352–7355. https://doi.org/10.1039/c6cc01965j

    Article  Google Scholar 

  9. Wei, J., Ge, Q., Yao, R., et al., Nat. Commun., 2017, vol. 8, p. 15174. https://doi.org/10.1038/ncomms15174

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gao, P., Li, S., Bu, X., et al., Nat. Chem., 2017, vol. 10, pp. 1019–1024. https://doi.org/10.1038/nchem.2794

    Article  CAS  Google Scholar 

  11. Liang, B., Duan, H., Sun, T., et al., ACS Sustain. Chem. Eng., 2018, vol. 1, pp. 925–932. https://doi.org/10.1021/acssuschemeng.8b04538

    Article  CAS  Google Scholar 

  12. Kangvansura, P., Chew, L.M., Saengsui, W., et al., Catal. Today., 2016, vol. 275, pp. 59–65. https://doi.org/10.1016/j.cattod.2016.02.045

    Article  CAS  Google Scholar 

  13. Wang, X., Lin, T., Li, J., et al., RSC Adv., 2019, vol. 8, pp. 4131–4139. https://doi.org/10.1039/c8ra10477h

    Article  CAS  Google Scholar 

  14. Visconti, C.G., Martinelli, M., Falbo, L., et al., Appl. Catal. B: Environ., 2017, vol. 200, pp. 530–542. https://doi.org/10.1016/j.apcatb.2016.07.047

    Article  CAS  Google Scholar 

  15. Li, N., Jiao, F., Pan, X., et al., Angew. Chem. Int. Ed. Engl., 2019, vol. 22, pp. 7400–7404. https://doi.org/10.1002/anie.201902990

    Article  CAS  Google Scholar 

  16. Li, Z., Wang, J., Qu, Y., et al., ACS Catal., 2017, vol. 12, pp. 8544–8548. https://doi.org/10.1021/acscatal.7b03251

    Article  CAS  Google Scholar 

  17. Liu, X., Wang, M., Zhou, C., et al., Chem. Commun., 2018, vol. 2, pp. 140–143. https://doi.org/10.1039/c7cc08642c

    Article  CAS  Google Scholar 

  18. García-Trenco, A., White, E.R., Regoutz, A., et al., ACS Catal., 2017, vol. 2, pp. 1186–1196. https://doi.org/10.1021/acscatal.6b02928

    Article  CAS  Google Scholar 

  19. An, B., Zhang, J.Z., Cheng, K., et al., JACS., 2017, vol. 139, pp. 3834–3840. https://doi.org/10.1021/jacs.7b00058

    Article  CAS  Google Scholar 

  20. Rungtaweevoranit, B., Baek, J., Araujo, J.R., et al., Nano. Lett., 2016, vol. 12, pp. 7645–7649. https://doi.org/10.1021/acs.nanolett.6b03637

    Article  CAS  Google Scholar 

  21. Han, H., Cui, P.P, Xiao, L.F., et al., J. Environ. Chem. Eng., 2021, vol. 6, pp 1–8. https://doi.org/10.1016/j.jece.2021.106354

    Article  CAS  Google Scholar 

  22. Frei, M. S., Capdevila-Cortada, M., García-Muelas, R., et al., J. Catal., 2018, vol. 361, pp. 313–321. https://doi.org/10.1016/j.jcat.2018.03.014

    Article  CAS  Google Scholar 

  23. Ni, Y., Liu, Y., Chen, Z., et al., ACS Catal., 2018, vol. 2, pp. 1026–1032. https://doi.org/10.1021/acscatal.8b04794

    Article  CAS  Google Scholar 

  24. Li, Z., Qu, Y., Wang, J., et al., Joule., 2019, vol. 2, pp. 570–583. https://doi.org/10.1016/j.joule.2018.10.027

    Article  CAS  Google Scholar 

  25. Gao, W., Guo, L., Cui, Y., et al., Chem. Sus.Chem., 2020, vol. 24, pp. 6541–6545. https://doi.org/10.1002/cssc.202002305

    Article  CAS  Google Scholar 

  26. Hu, Z.J., Zhang, H.B., Wang, L., et al., Catal. Sci. Technol., 2014, vol. 4, pp. 2891–2895. https://doi.org/10.1039/c4cy00376d

    Article  CAS  Google Scholar 

  27. Lee, S., Choi, M., J. Catal., 2019, vol. 375, pp. 183–192. https://doi.org/10.1016/j.jcat.2019.05.030

    Article  CAS  Google Scholar 

  28. Olsbye, U., Svelle, S., Bjorgen, M., et al., Angew. Chem. Int. Ed. Engl., 2012, vol. 24, pp. 5810–5831. https://doi.org/10.1002/anie.201103657

    Article  CAS  Google Scholar 

  29. Kianfar, E., Hajimirzaee, S., mousavian, S., et al., Microchem. J., 2020, vol. 180, pp. 71–82. https://doi.org/10.1016/j.microc.2020.104822

    Article  CAS  Google Scholar 

  30. Wang, G.L., Wu, W., Zan, W., et al., Trans. Nonferrous. Met. Soc., 2015, vol. 205, pp. 1580–1586. https://doi.org/10.1016/s0926-860x(98)00333-0

    Article  Google Scholar 

  31. Losch, P., Boltz, M., Bernardon, C., et al., Appl. Catal. A: Gen., 2016, vol. 509, pp. 30–37. https://doi.org/10.1016/j.apcata.2015.09.037

    Article  CAS  Google Scholar 

  32. Zhang, H., Ma, Y., Song, K., et al., J. Catal., 2013, vol. 302, pp. 115–125. https://doi.org/10.1016/j.jcat.2013.03.019

    Article  CAS  Google Scholar 

  33. Inagaki, S., Shinoda, S., Hayashi, S., et al., Catal Sci & Tech., 2016, vol. 8, pp. 2598–2604. https://doi.org/10.1039/c5cy01644d

    Article  Google Scholar 

  34. Hu, Z., Zhang, H., Wang, L., et al., Catal. Sci. Technol., 2014, vol. 9, pp. 2891–2895. https://doi.org/10.1039/c4cy00376d

    Article  CAS  Google Scholar 

  35. Wang, P., Shen, B., Gao, J., Catal. Commun., 2007, vol. 7, pp. 1161–1166. https://doi.org/10.1016/j.catcom.2006.10.021

    Article  CAS  Google Scholar 

  36. Su, X., Zan, W., Bai, X., et al., Catal Sci & Tech., 2017, vol. 9, pp. 1943–1952. https://doi.org/10.1039/c7cy00435d

    Article  CAS  Google Scholar 

  37. Feng, C., Su, X., Wang, W., et al., Microporous and Mesoporous Materials., 2021, vol. 312, pp. 1–11. https://doi.org/10.1016/j.micromeso.2020.110780

    Article  CAS  Google Scholar 

  38. Jiménez-López, A., Rodr´ıguez-Castellón, E., Maireles-Torres, P., Appl. Catal. A., 2001, vol. 218, pp. 295–306. https://doi.org/10.1016/s0926-860x(01)00656-1

    Article  Google Scholar 

  39. Zhang, W.X., Liang, Y., Luo, J.W., et al., J. Mater. Sci., 2016, vol. 13, pp. 6488–6496. https://doi.org/10.1007/s10853-016-9948-x

    Article  CAS  Google Scholar 

  40. Simonova, L.G., Zirka, A.A., Reshetnikov, S.I., et al., Kinetics Catal., 2011, vol. 3, pp. 418–426. https://doi.org/10.1134/s0023158411030189

    Article  Google Scholar 

  41. Zhou, C., Shi, J., Zhou, W., et al., ACS Catal., 2019, vol. 1, pp. 302–310. https://doi.org/10.1021/acscatal.9b04309

    Article  CAS  Google Scholar 

  42. Wang, J., Zhang, A., Jiang, X., et al., J. CO2 Util., 2018, vol. 27, pp. 81–88. https://doi.org/10.1016/j.jcou.2018.07.006

    Article  CAS  Google Scholar 

  43. Ye, J., Liu, C., Mei, D., et al., ACS Catal., 2013, vol. 6, pp. 1296–1306. https://doi.org/10.1021/cs400132a

    Article  CAS  Google Scholar 

  44. Li, Z., Wang, J., Qu, Y., et al., ACS Catal., 2017, vol. 12, pp. 8544–8548. https://doi.org/10.1021/acscatal.7b03251

    Article  CAS  Google Scholar 

  45. Gao, P., Dang, S., Li, S., et al., ACS Catal., 2017, vol. 1, pp. 571–578. https://doi.org/10.1021/acscatal.7b02649

    Article  CAS  Google Scholar 

  46. Wang, F., He, S., Chen, H., et al., J. Am. Chem. Soc., 2016, vol. 19, pp. 6298–6305. https://doi.org/10.1021/jacs.6b02762

    Article  CAS  Google Scholar 

  47. Zhang, W.X., Liang, Y., Luo, J.W., et al., J. Mater. Sci., 2016, vol. 13, pp. 1–9. https://doi.org/10.1007/s10853-016-9948-x

    Article  CAS  Google Scholar 

  48. Lin, Y., Cai, W., Tian, X., et al., J. Mater. Chem., 2011, vol. 4, pp. 991–997. https://doi.org/10.1039/c0jm02334e

    Article  CAS  Google Scholar 

  49. Liu, B., Terano, M., J. Mol. Catal. A: Chem., 2001, vol. 172, pp. 227–240. https://doi.org/10.1016/s1381-1169(01)00121-2

    Article  CAS  Google Scholar 

  50. Gao, S., Dong, C., Luo, H., et al., Elect. Acta., 2013, vol. 114, pp. 233–241. https://doi.org/10.1016/j.electacta.2013.10.009

    Article  CAS  Google Scholar 

  51. Fu, T., Shao, J., Li, Z., Appl. Catal. B: Environ., 2021, vol. 291, pp. 1–16. https://doi.org/10.1016/j.apcatb.2021.120098

    Article  CAS  Google Scholar 

  52. Zuo, J.C., Chen, W.K., Yuan, Y.Z., Sci. Adv., 2020, vol. 6, pp. 1–8. https://doi.org/10.1126/sciadv.aba5433

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is supported by Intergovernmental International Science and Technology Innovation Cooperation Key Project (2018YFE0108800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Wu.

Ethics declarations

Co-author A.L. Maksimov claims to be the editor-in-chief of the Journal of Applied Chemistry; the remaining co-authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, Q., Maximov, A.L., Liu, B.Y. et al. A Highly Selective Cr2O3/nano-ZSM-5 Bifunctional Catalysts for CO2 Hydrogenation to Aromatics. Russ J Appl Chem 95, 296–307 (2022). https://doi.org/10.1134/S1070427222020100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222020100

Keywords:

Navigation