Skip to main content
Log in

Cytotoxicity and Gene Expression Studies of Curcumin and Piperine Loaded Nanoparticles on Breast Cancer Cells

  • Various Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the anticancer effects of curcumin and piperine loaded nanoparticles compared to docetaxel on the breast cancer cell line MDA-MB-231. Curcumin, exerts anti-neoplastic and anti-apoptotic activities in cancer cell lines and piperine is effective for enhancing the bioavailability of curcumin. Docetaxel is an antimicrotubule agent used for cancer treatment. The cytotoxicity and gene expression effects of curcumin-piperine carrying nanoparticles compared to docetaxel were investigated. A reliable strategy for enhancing poor solubility is encapsulation through methods like electrospray as in this study. The cytotoxic effects of nanoparticles and docetaxel on cells were determined with IC50 values by xCELLigence real-time cell analyzer. The gene expression analysis was performed to evaluate the molecular genetic changes for cancer related genes. The genes related to cancer formation, invasion and progression such as AKT1, MYC, NOTCH1, IL6, JUN, EGFR, MAPK1, RARB, BCL2, CCND1, MAPK8, BIRC5, ESR1 revealed decreased expression in the nanoparticles group compared to docetaxel. The gene expression results of curcumin and piperine loaded nanoparticles revealed higher significant effects on MDA-MB-231 breast cancer cells in terms of cancer progression compared to docetaxel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Bhatia, M., Bhalerao, M., Cruz-Martins, N., and Kumar, D., Phytother Res., 2021, vol. 35, no. 9, pp. 4913–4929. https://doi.org/10.1002/ptr.7121

    Article  CAS  PubMed  Google Scholar 

  2. Moradi, S.Z., Momtaz, S., Bayrami, Z., Farzaei, M.H., and Abdollahi, M., Front Bioeng Biotechnol., 2020. https://doi.org/10.3389/fbioe.2020.00238

  3. Eghbaliferiz, S., Farhadi, F., Barreto, G.E., Majeed, M., and Sahebkar, A., Pharmacol Rep., 2020, vol. 72(4), pp. 769–782. https://doi.org/10.1007/s43440-020-00112-3

    Article  CAS  PubMed  Google Scholar 

  4. Slika, L., Moubarak, A., Borjac, J., Baydoun, E., and Patra, D., Mater. Sci. Eng. C, Mater. Biol. Appl., 2020, vol. 109, ID 110550-7. https://doi.org/10.1016/j.msec.2019.110550

    Article  CAS  Google Scholar 

  5. Vijayan, U., Shah, N., Muley, A., and Singhal, S., Journal of Food Engineering, 2021, vol. 292, ID 110258.

    Article  Google Scholar 

  6. Wang, Y., Lu, Z.X., Lv, F.X., and Bie, X.M., Eur. Food Res. and Tech., 2009, vol. 229, pp. 391–396. https://doi.org/10.1007/s00217-009-1064-6

    Article  CAS  Google Scholar 

  7. Dewi, S., Yosua, A., Yustina, S., Yosi, B., and Wouter, L.J., Heliyon, 2021, vol. 7, no. 3, ID e06541. https://doi.org/10.1016/j.heliyon.2021.e06541

    Article  Google Scholar 

  8. Ruenraroengsak, P., Cook, J.M., and Florence, A.T., J. Control. Release, 2010, vol. 141, no. 3, pp. 265–276. https://doi.org/10.1016/j.jconrel.2009.10.032

    Article  CAS  PubMed  Google Scholar 

  9. Vito, L., Agnese, L., and Francesco, G., J. Oncol., 2020, ID 9645294. https://doi.org/10.1155/2020/9645294

    Article  CAS  Google Scholar 

  10. Fumoleau, P., Chevallier, B., Kerbrat, P., Dieras, V., Azli, N., Bayssas, M., and Van Glabbeke, M., Breast Cancer Research and Treatment, 1995, vol. 33, pp. 39–46. https://doi.org/10.1007/Bf00666069

    Article  CAS  PubMed  Google Scholar 

  11. Dieras, V., Oncology (Williston Park), 1997, vol. 11. no. 8, pp. 31–33.

    CAS  Google Scholar 

  12. Andrea, R., Pietro, C., Laura, C., Lorenzo, G., et al., Ther. Adv. Med. Oncol., 2021, vol. 13, ID 1758835920985632. https://doi.org/10.1177/1758835920985632

    Article  CAS  Google Scholar 

  13. Zhang, L., Huang, J., Si, T., and Xu, R.X., Expert Rev. Med. Devices, 2012, vol. 9, no. 6, pp. 595–612. https://doi.org/10.1586/Erd.12.58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jaworek, A., J. Microencapsul., 2008, vol. 25, no. 7, pp. 443–468.

    Article  CAS  Google Scholar 

  15. Cao, L., Luo, J., Tu, K., Wang, L.-Q., and Jiang, H., Coll. Surf. B: Biointerfaces, 2014, vol. 115, pp. 212–218.

  16. Yun, K.M., Suryamas, A.B., Hirakawa, C., Iskandar, F., and Okuyama, K., Langmuir, 2009, vol. 25, pp. 11038–11042.

    Article  CAS  Google Scholar 

  17. Ding, L., Lee, T. and Wang, C.H., J. Control. Release, 2005, vol. 102, pp. 395–413.

    Article  CAS  Google Scholar 

  18. Kim, W. and Kim, S.S., Polymer, 2011, vol. 52, pp. 3325–3336.

    Article  CAS  Google Scholar 

  19. Valo, H., Peltonen, L., Vehvilainen, S., Karjalainen, M., Kostiainen, R., Laaksonen, T., and Hirvonen, J., Small, 2009, vol. 5, pp. 1791–1798.

  20. Zhang, S., Kawakami, K, Yamamoto, M., Masaoka, Y., Kataoka, M., Yamashita, S., and Sakuma, S., Mol. Pharm., 2011, vol. 8, pp. 807–813.

    Article  Google Scholar 

  21. Baspinar, Y., Üstündaş, M., Bayraktar, O., and Sezgin, C., J. Sci. Cbu., 2017, vol. 13, no. 3, pp. 747–754. https://doi.org/10.18466/Cbayarfbe.339351

    Article  CAS  Google Scholar 

  22. Haq, Iu., Imran, M., Nadeem, M., Tufail, T., Gondal, Ta, and Mubarak, Ms., Phytother. Res., 2021, vol. 35, no. 2, pp. 680–700. https://doi.org/10.1002/Ptr.6855

    Article  CAS  PubMed  Google Scholar 

  23. Dudhatra, Gb., Mody, Sk., Awale, Mm., Patel, Hb., Modi, Cm., Kumar, A., Kamani, Dr., and Chauhan, Bn., A Scientific World Journal, 2012. https://doi.org/10.1100/2012/637953

    Article  PubMed  Google Scholar 

  24. Fança-Berthon, P., Tenon, M., Bouter-Banon, Sl., Manfré, A., Maudet, C., Dion, A., Chevallier, H., Laval, J., and Van Breemen, Rb., J. Nutr., 2021, vol. 151, no. 7, pp. 1802–1816. https://doi.org/10.1093/Jn/Nxab087

    Article  PubMed  PubMed Central  Google Scholar 

  25. Quijia, Cr., Araujo, Vh., and Chorilli, M., Acta Pharm., 2021, vol. 1, no. 71(2), pp. 185–213. https://doi.org/10.2478/Acph-2021-0015

    Article  Google Scholar 

  26. Banerjee, S., Katiyar, P., Kumar, V., Saini, Ss., Varshney, R., Krishnan, V., Sircar, D., and Roy, P., Toxicol Res. (Camb), 2021, vol. 18, no. 10, pp. 169–182. https://doi.org/10.1093/Toxres/Tfab001

    Article  Google Scholar 

  27. Dogra, R.K., Khanna S., and Shanker, R., Toxicology, 2004, vol. 196, no. 3, pp. 229–236. https://doi.org/10.1016/j.tox.2003.10.006

    Article  CAS  PubMed  Google Scholar 

  28. Lai, L.H., Fu, Q.H., Liu, Y, Jiang, K, Guo, Q.M., Chen, Q.Y., Yan, B, Wang, Q.Q., and Shen, J.G., Acta Pharmacol., 2012, vol. 33(4), pp. 523–530. https://doi.org/10.1038/aps.2011.209

    Article  CAS  Google Scholar 

  29. Yaffe, P.B., Doucette, C.D., Walsh, M., and Hoskin, D.W., Exp. Mol. Path., 2013, vol. 94, no. 1, pp. 109–114. https://doi.org/10.1016/j.yexmp.2012.10.008

    Article  CAS  Google Scholar 

  30. Baspinar, Y., Üstündas, M., Bayraktar, O., and Sezgin, C., Saudi Pharm, J., 2018, vol. 26(3), pp. 323–334. https://doi.org/10.1016/J.Jsps.2018.01.010

    Article  PubMed  PubMed Central  Google Scholar 

  31. Akaishi, T. and Abe, K., Eur. J. Pharmacol., 2018, vol. 819, pp. 190–197. https://doi.org/10.1016/j.ejphar.2017.12.008

    Article  CAS  PubMed  Google Scholar 

  32. Atal, N. and Bedi, K.L., J. Ayur. Integr. Med., 2010, vol. 1(2), pp. 96–99. https://doi.org/10.4103/0975-9476.65073

    Article  Google Scholar 

  33. Aygunes, D., Sezgin, C., Uslu, R., and Kosova, B., J. Clinical Oncology, 2015, vol. 33, no. 15. https://doi.org/10.1200/jco.2015.33.15_suppl.e13520

    Article  Google Scholar 

  34. Bimonte, S., Barbieri, A., Palma, G., Rea, D., Luciano, A., D’Aiuto, M., Arra, C., and Izzo, F., BioMed. Res. Int., 2015, vol. 1, no. 8. https://doi.org/10.1155/2015/878134

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cheng, F., Chen, Y., Zhan, Z., Liu, Y., Hu, P., Ren, H., Tang, H., and Peng, M., Inflammation, 2018, vol. 41, pp. 579–594. https://doi.org/10.1007/s10753-017-0714-2

    Article  CAS  PubMed  Google Scholar 

  36. Doucette, C.D., Hilchie, A.L., Liwski, R., and Hoskin, D.W., J. Nutr. Biochem., 2013, vol. 24, no. 1, pp. 231–239. https://doi.org/10.1016/j.jnutbio.2012.05.009

    Article  CAS  PubMed  Google Scholar 

  37. Fadus, M.C., Lau, C., Bikhchandani, J., and Lynch, H.T., J. Tradit. Complement Med., 2016, vol. 7, no. 3, pp. 339–346. https://doi.org/10.1016/j.jtcme.2016.08.002

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sa, G. and Das, T., Cell Division, 2008, vol. 3, pp. 1–14, https://doi.org/10.1186/1747-1028-3-14

    Article  CAS  Google Scholar 

  39. Hernandez-Vargas, H., Palacios, J., and Moreno-Bueno, G.., Cell Cycle, 2007, vol. 6, no. 7, pp. 780–783. https://doi.org/10.4161/cc.6.7.4050

    Article  CAS  PubMed  Google Scholar 

  40. Hernandez-Vargas, H. and Palacios, J., Oncogene, 2007, vol. 26, pp. 2902–2913. https://doi.org/10.1038/Sj.Onc.1210102

    Article  CAS  PubMed  Google Scholar 

  41. Jaiswal, M., Dinda, A.K., Gupta, A., and Koul, V., Biomed. Mater., 2010, vol. 5, no. 6, pp. 1–13. https://doi.org/10.1088/1748-6041/5/6/065014

    Article  CAS  Google Scholar 

  42. Li, S., Wang, C., Wang, M.W., Li, W., Matsumoto, K., and Tang, Y.Y., Life Sci., 2007, vol. 20, no. 80(15), pp. 1373–1381. https://doi.org/10.1016/j.lfs.2006.12.027

    Article  CAS  Google Scholar 

  43. Liu, X.M., Sun, Q.S., Wang, H.J., Zhang, L, and Wang, J.Y., Biomaterials, 2005, 26(1), pp. 109–115. https://doi.org/10.1016/j.biomaterials.2004.02.013

    Article  CAS  Google Scholar 

  44. Makhov, P., Golovine, K., Canter, D., Kutikov, A., Simhan, J., Corlew, M.M., Uzzo, R.G., and Kolenko, V.M., Prostate, 2012, vol. 72, no. 6, pp. 661–667. https://doi.org/10.1002/pros.21469

    Article  CAS  PubMed  Google Scholar 

  45. Mazzarino, L., Travelet, C., Ortega-Murillo, S., Otsuka, I., Pignot-Paintrand, I., Lemos Senna, E., and Borsali, R.., J. Colloid Interface Sci., 2011, vol. 15, no. 370(1), pp. 58–66. https://doi.org/10.1016/j.jcis.2011.12.063

    Article  CAS  Google Scholar 

  46. Owen, H.C., Appiah, S., Hasan, N., Ghali, L., Elayat, G., and Bell, C., Int. Rev. Neurobiol., 2017, vol. 135, pp. 249–278. https://doi.org/10.1016/bs.irn.2017.02.012

    Article  PubMed  Google Scholar 

  47. Pradeep, C.R. and Kuttan, G., Clin. Exp. Metastasis, 2002, vol. 19, pp. 703–708. https://doi.org/10.1023/A:1021398601388

    Article  CAS  PubMed  Google Scholar 

  48. Qadir, M.I., Naqvi, S.T., and Muhammad, S.A., Asian Pac., J., Cancer Prev., 2016, vol. 17(6), pp. 2735–2739.

    PubMed  Google Scholar 

  49. Ramachandran, C. and You, W., Breast Cancer Res. Treat., 1999, vol. 54, pp. 269–278. https://doi.org/10.1023/A:1006170224414

    Article  CAS  PubMed  Google Scholar 

  50. Schuetz, E.G., Schinkel, A.H., Relling, M.V., Schuetz, J.D., Proc. Natl. Acad. Sci., 1996, vol. 93, no. 9, pp. 4001–4005. https://doi.org/10.1073/pnas.93.9.4001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shoba, G., Joy, D., Joseph, T., Majeed, M., Rajendran, R., and Srinivas, P.S., Planta Med., 1998, vol. 64(4), pp. 353–356. https://doi.org/10.1055/s-2006-957450

    Article  CAS  PubMed  Google Scholar 

  52. Slika, L., Moubarak, A., Borjac, J., Baydoun, E., and Patra, D., Mater. Sci. Eng, pp. Mater, Biol, Appl., 2020, vol. 109, pp. 110550–110557. https://doi.org/10.1016/j.msec.2019.110550

    Article  CAS  Google Scholar 

  53. Squires, M.S., Hudson, E.A., Howells, L., Sale, S., Houghton, C.E., Jones, J.L., Fox, L.H., Dickens, M., Prigent, S.A., and Manson, M.M., Biochemical Pharmacology, 2003, vol. 65, no. 3, pp. 361–376. https://doi.org/10.1016/S0006-2952(02)01517-4

    Article  CAS  PubMed  Google Scholar 

  54. Tan, M.L., Choong, P.F., and Dass, C.R., J. Pharm. Pharmacol., 2009, vol. 61, no. 2, pp. 131–142. https://doi.org/10.1211/jpp/61.02.0001

    Article  CAS  PubMed  Google Scholar 

  55. Thanou, M., Verhoef, J.C., and Junginger, H.E., Adv. Drug Del. Rev., 2001, vol. 50, no. 1, pp. 91–101. https://doi.org/10.1016/S0169-409X(01)00180-6

    Article  Google Scholar 

  56. Tian, B., Zhao, Y., Liang, T., Ye, X., Li, Z., Yan, D., Fu, Q., and Li, Y., J. Drug Target, 2017, vol. 25, no. 7, pp. 626–636. https://doi.org/10.1080/1061186X.2017.1306535

    Article  CAS  PubMed  Google Scholar 

  57. Vaibhav, K., Shrivastava, P., Javed, H., Khan, A., Ahmed, M.E., Tabassum, R., Khan, M.M., Khuwaja, G., Islam, F., Siddiqui, M.S., and Safhi, M.M., Mol. Cell. Biochem., 2012, vol. 367, pp. 73–84. https://doi.org/10.1007/s11010-012-1321-z

    Article  CAS  PubMed  Google Scholar 

  58. Valo, H., Peltonen, L., Vehvilainen, S., Karjalainen, M., Kostiainen, R., Laaksonen, T., and Hirvonen, J., Small, 2009, vol. 5, no. 15, pp. 1791–1798. https://doi.org/10.1002/smll.200801907

    Article  CAS  PubMed  Google Scholar 

  59. Wahlang, B., Pawar, Y.B., and Bansal, A.K., Eur. J. Pharm., Biopharm, 2011, vol. 77(2), pp. 275–282. https://doi.org/10.1016/j.ejpb.2010.12.006

    Article  CAS  PubMed  Google Scholar 

  60. Yang, K., Lin, L., Tseng, T., Wang, S., and Tsai, T., J. Chromatogr. B, 2007, vol. 853, nos. 1–2, pp. 183–189. https://doi.org/10.1016/j.jchromb.2007.03.010

    Article  CAS  Google Scholar 

  61. Zhang, Z., Yi, P., Tu, C., Zhan, J., Jiang, L., and Zhang, F., Biomed Res Int., 2019, ID 8912961. https://doi.org/10.1155/2019/8912961

    Article  CAS  Google Scholar 

  62. Zhu, H.J., Wang, J.S., Markowitz Donovan, J.L., Gibson, B.B., and DeVane, C.L., Neuropsychopharmacology, 2007, vol. 32, pp. 757–764. https://doi.org/10.1038/sj.npp.1301181

    Article  CAS  PubMed  Google Scholar 

  63. Zutshi, R.K., Singh, R., Zutshi, U., Johri, R.K., and Atal, C.K., J. Assoc. Phys. India, 1985, vol. 33, pp. 223–224.

    CAS  Google Scholar 

  64. Kang, H.J., Lee, S.H., Price, J.E., and Kim, L.S., The Breast Journal., 2009, vol. 15, no. 3, pp. 223–229. https://doi.org/10.1111/j.1524-4741.2009.00709.x

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duygu Aygunes Jafari.

Ethics declarations

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, D.A., Baspinar, Y., Ustundas, M. et al. Cytotoxicity and Gene Expression Studies of Curcumin and Piperine Loaded Nanoparticles on Breast Cancer Cells. Russ J Appl Chem 95, 135–142 (2022). https://doi.org/10.1134/S1070427222010177

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222010177

Keywords:

Navigation