Skip to main content
Log in

Photocatalytic Activity of Fluorinated Titanium Dioxide in Ozone Decomposition

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Nanocrystalline (~10 nm) fluorinated titanium dioxide was prepared by hydrothermal-microwave treatment. The powder obtained was applied onto the surface of porous quartz glass by impregnation; the TiO2 amount loaded was 0.87 wt %. As shown by in situ measurements, the material obtained exhibits high catalytic activity in ozone decomposition, exceeding that of commercial photocatalysts Hombikat UV100 and Evonik Aeroxide® TiO2 P25 by a factor of more than 1.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. Resolution of the Chief State Sanitary Physician of the Russian Federation of January 28, 2021, no. 2: On Approval of Sanitary Rules and Regulations SanPiN 1.2.3685–21 “Hygienic Norms and Requirements to Ensuring the Safety and/or Harmlessness of Habitat Factors to Humans.”

  2. NAAQS, EPA, Criteria Pollutants, 2015. https://www.epa.gov/criteria-air-pollutants/naaqs-table.

REFERENCES

  1. Fann, N., Lamson, A.D., Anenberg, S.C., Wesson, K., Risley, D., and Hubbell, B.J., Risk Anal., 2012, vol. 32, no. 1, pp. 81–95. https://doi.org/10.1111/j.1539-6924.2011.01630.x

    Article  PubMed  Google Scholar 

  2. Apte, M.G., Buchanan, I.S.H., and Mendell, M.J., Indoor Air, 2008, vol. 18, no. 2, pp. 156–170. https://doi.org/10.1111/j.1600-0668.2008.00521.x

    Article  CAS  PubMed  Google Scholar 

  3. Cooper, O.R., Parrish, D.D., Stohl, A., Trainer, M., Nédélec, P., Thouret, V., Cammas, J.P., Oltmans, S.J., Johnson, B.J., Tarasick, D., Leblanc, T., McDermid, I.S., Jaffe, D., Gao, R., Stith, J., Ryerson, T., Aikin, K., Campos, T., Weinheimer, A., and Avery, M.A., Nature, 2010, vol. 463, no. 7279, pp. 344–348. https://doi.org/10.1038/nature08708

    Article  CAS  PubMed  Google Scholar 

  4. Ohtani, B., Zhang, S.-W., Nishimoto, S., and Kagiya, T., J. Chem. Soc., Faraday Trans., 1992, vol. 88, no. 7, pp. 1049–1053. https://doi.org/10.1039/ft9928801049

    Article  CAS  Google Scholar 

  5. Kovalev, I.A., Petrov, A.A., Ibragimova, O.A., Shokod’ko, A.V., Chernyavskii, A.S., Goodilin, E.A., Solntseva, K.A., and Tarasov, A.B., Mendeleev Commun., 2018, vol. 28, no. 5, pp. 541–542. https://doi.org/10.1016/j.mencom.2018.09.031

    Article  CAS  Google Scholar 

  6. Ye, S.Y., Li, M.B., Song, X.L., Luo, S.C., and Fang, Y.C., Chem. Eng. J., 2011, vol. 167, no. 1, pp. 28–34. https://doi.org/10.1016/j.cej.2010.11.102

    Article  CAS  Google Scholar 

  7. Patzsch, J. and Bloh, J.Z., Catal. Today, 2018, vol. 300, pp. 2–11. https://doi.org/10.1016/j.cattod.2017.07.010

    Article  CAS  Google Scholar 

  8. Ohtani, B., Zhang, S.W., Ogita, T., Nishimoto, S., and Kagiya, T., J. Photochem. Photobiol. A: Chemistry, 1993, vol. 71, no. 2, pp. 195–198. https://doi.org/10.1016/1010-6030(93)85073-H

    Article  CAS  Google Scholar 

  9. Lin, Y. and Lin, C., Environ. Prog., 2008, vol. 27, no. 4, pp. 496–502. https://doi.org/10.1002/ep.10305.

    Article  CAS  Google Scholar 

  10. Cho, K.-C., Hwang, K.-C., Sano, T., Takeuchi, K., and Matsuzawa, S., J. Photochem. Photobiol. A: Chemistry, 2004, vol. 161, nos. 2–3, pp. 155–161. https://doi.org/10.1016/S1010-6030(03)00287-9.

    Article  CAS  Google Scholar 

  11. Chen, H., Stanier, C.O., Young, M.A., and Grassian, V.H., J. Phys. Chem. A, 2011, vol. 115, no. 43, pp. 11979–11987. https://doi.org/10.1021/jp208164v

    Article  CAS  PubMed  Google Scholar 

  12. Sun, J., Qiao, L., Sun, S., and Wang, G., J. Hazard. Mater., 2008, vol. 155, nos. 1–2, pp. 312–319. https://doi.org/10.1016/j.jhazmat.2007.11.062

    Article  CAS  PubMed  Google Scholar 

  13. Tarasov, A., Minnekhanov, A., Trusov, G., Konstantinova, E., Zyubin, A., Zyubina, T., Sadovnikov, A., Dobrovolsky, Y., and Goodilin, E., J. Phys. Chem. C, 2015, vol. 119, no. 32, pp. 18663–18670. https://doi.org/10.1021/acs.jpcc.5b02760

    Article  CAS  Google Scholar 

  14. Yu, J., Xiang, Q., Ran, J., and Mann, S., CrystEngComm, 2010, vol. 12, no. 3, pp. 872–879. https://doi.org/10.1039/B914385H

    Article  CAS  Google Scholar 

  15. Yu, J., Liu, S., and Yu, H., J. Catal., 2007, vol. 249, no. 1, pp. 59–66. https://doi.org/10.1016/j.jcat.2007.03.032.

    Article  CAS  Google Scholar 

  16. Zhukov, V.P., Kostenko, M.G., Rempel, A.A., and Shein, I.R., Nanosyst.: Phys., Chem., Math., 2019, vol. 10, no. 3, pp. 374–382. https://doi.org/10.17586/2220-8054-2019-10-3-374-382

    Article  CAS  Google Scholar 

  17. Zlobin, V.V., Krasilin, A.A., and Almjasheva, O.V., Nanosyst.: Phys., Chem., Math., 2019, vol. 10, no. 6, pp. 733–739. https://doi.org/10.17586/2220-8054-2019-10-6-733-739

    Article  CAS  Google Scholar 

  18. Yang, H.G., Sun, C.H., Qiao, S.Z., Zou, J., Liu, G., Smith, S.C., Cheng, H.M., and Lu, G.Q., Nature, 2008, vol. 453, no. 7195, pp. 638–641. https://doi.org/10.1038/nature06964

    Article  CAS  PubMed  Google Scholar 

  19. Liu, S., Yu, J., Cheng, B., and Jaroniec, M., Adv. Colloid Interface Sci., 2012, vol. 173, pp. 35–53. https://doi.org/10.1016/j.cis.2012.02.004

    Article  CAS  PubMed  Google Scholar 

  20. Lei, B.X., Zhang, P., Xie, M.L., Li, Y., Wang, S.N., Yu, Y.Y., Sun, W., and Sun, Z.F., Electrochim. Acta, 2015, vol. 173, pp. 497–505. https://doi.org/10.1016/j.electacta.2015.05.089

    Article  CAS  Google Scholar 

  21. Dozzi, M.V. and Selli, E., Catalysts, 2013, vol. 3, no. 2, pp. 455–485. https://doi.org/10.3390/CATAL3020455

    Article  CAS  Google Scholar 

  22. Sadovnikov, A.A., Baranchikov, A.E., Zubavichus, Y.V., Ivanova, O.S., Murzin, V.Y., Kozik, V.V., and Ivanov, V.K., J. Photochem. Photobiol. A: Chemistry, 2015, vols. 303–304, pp. 36–43. https://doi.org/10.1016/j.jphotochem.2015.01.010

    Article  CAS  Google Scholar 

  23. Sadovnikov, A.A., Baranchikov, A.E., Kozik, V.V., Borilo, L.P., Kozyukhin, S.A., and Ivanov, V.K., Key Eng. Mater., 2015, vol. 670, pp. 177–182. https://doi.org/10.4028/www.scientific.net/KEM.670.177

    Article  Google Scholar 

  24. Matthews, R.W. and McEvoy, S.R., J. Photochem. Photobiol. A: Chemistry, 1992, vol. 66, no. 3, pp. 355–366. https://doi.org/10.1016/1010-6030(92)80008-J

    Article  CAS  Google Scholar 

  25. Jeong, J., Sekiguchi, K., and Sakamoto, K., Chemosphere, 2004, vol. 57, no. 7, pp. 663–671. https://doi.org/10.1016/j.chemosphere.2004.05.037

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, H. and Banfield, J.F., J. Mater. Chem., 1998, vol. 8, no. 9, pp. 2073–2076. https://doi.org/10.1039/a802619j

    Article  CAS  Google Scholar 

  27. Alonso-Tellez, A., Masson, R., Robert, D., Keller, N., and Keller, V., J. Photochem. Photobiol. A: Chemistry, 2012, vol. 250, pp. 58–65. https://doi.org/10.1016/j.jphotochem.2012.10.008

    Article  CAS  Google Scholar 

  28. Mills, A., Lee, S.K., and Lepre, A., J. Photochem. Photobiol. A: Chemistry, 2003, vol. 155, nos. 1–3, pp. 199–205. https://doi.org/10.1016/S1010-6030(02)00388-X

    Article  CAS  Google Scholar 

  29. González-Elipe, A.R., Soria, J., and Munuera, G., Z. Phys. Chem., 1981, vol. 126, no. 2, pp. 251–257. https://doi.org/10.1524/zpch.1981.126.2.251

    Article  Google Scholar 

  30. Li, G., Li, L., Boerio-Goates, J., and Woodfield, B.F., J. Am. Chem. Soc., 2005, vol. 127, no. 24, pp. 8659–8666. https://doi.org/10.1021/ja050517g

    Article  CAS  PubMed  Google Scholar 

  31. Wu, C.-Y., Tu, K.-J., Deng, J.-P., Lo, Y.-S., and Wu, C.-H., Materials, 2017, vol. 10, no. 5, p. 566. https://doi.org/10.3390/ma10050566

    Article  CAS  PubMed Central  Google Scholar 

  32. Vohra, M.S., Kim, S., and Choi, W., J. Photochem. Photobiol. A: Chemistry, 2003, vol. 160, nos. 1–2, pp. 55–60. https://doi.org/10.1016/S1010-6030(03)00221-1

    Article  CAS  Google Scholar 

  33. Minella, M., Faga, M.G., Maurino, V., Minero, C., Pelizzetti, E., Coluccia, S., and Martra, G., Langmuir, 2010, vol. 26, no. 4, pp. 2521–2527. https://doi.org/10.1021/la902807g

    Article  CAS  PubMed  Google Scholar 

  34. Dozzi, M.V. and Selli, E., J. Photochem. Photobiol. C: Photochem. Rev., 2013, vol. 14, no. 1, pp. 13–28. https://doi.org/10.1016/j.jphotochemrev.2012.09.002

    Article  CAS  Google Scholar 

  35. Gong, X.-Q. and Selloni, A., J. Phys. Chem. B, 2005, vol. 109, no. 42, pp. 19560–19562. https://doi.org/10.1021/jp055311g

    Article  CAS  PubMed  Google Scholar 

  36. Selloni, A., Nat. Mater., 2008, vol. 7, no. 8, pp. 613–615. https://doi.org/10.1038/nmat2241

    Article  CAS  PubMed  Google Scholar 

  37. Feng, J., Yin, M., Wang, Z., Yan, S., Wan, L., Li, Z., and Zou, Z., CrystEngComm, 2010, vol. 12, no. 11, pp. 3425–3429. https://doi.org/10.1039/c0ce00070a

    Article  CAS  Google Scholar 

  38. Chu, L., Qin, Z., Yang, J., and Li, X., Sci. Rep., 2015, vol. 5, ID 12143. https://doi.org/10.1038/srep12143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Han, X., Kuang, Q., Jin, M., Xie, Z., and Zheng, L., J. Am. Chem. Soc., 2009, vol. 131, no. 9, pp. 3152–3153. https://doi.org/10.1021/ja8092373

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was performed within the framework of the government assignment for the Institute of General and Inorganic Chemistry, Russian Academy of Sciences in the field of basic research.

Author information

Authors and Affiliations

Authors

Contributions

A.A. Sadovnikov: synthesis of the compound for the study and studies of the catalytic activity of the samples; E.R. Naranov: major fraction of work on physicochemical analysis of the samples and participation in preparation of figures; A.L. Maksimov: participation in setting the tasks of the study and analysis of the catalytic data; A.E. Baranchikov: major fraction of literature search and SEM examination of the samples; V.K. Ivanov: participation in setting the tasks of the study, evaluation of the performance of the photocatalysts.

Corresponding author

Correspondence to A. A. Sadovnikov.

Ethics declarations

A.L. Maksimov is the Editor-in-Chief of Zhurnal Prikladnoi Khimii/Russian Journal of Applied Chemistry. The other authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 1, pp. 119–127, December, 2022 https://doi.org/10.31857/S0044461822010145

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadovnikov, A.A., Naranov, E.R., Maksimov, A.L. et al. Photocatalytic Activity of Fluorinated Titanium Dioxide in Ozone Decomposition. Russ J Appl Chem 95, 118–125 (2022). https://doi.org/10.1134/S1070427222010153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222010153

Keywords:

Navigation