Skip to main content
Log in

Composite Fibers Based on Hydrated Cellulose and Poly-N-vinylpyrrolidone, Prepared from Cellulose Solutions in N-Methylmorpholine-N-Oxide

  • Composite Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Hydrophilic composite fibers of various compositions were prepared from mixtures of solid solutions of cellulose in N-methylmorpholine-N-oxide or its monohydrate and poly-N-vinylpyrrolidone after bringing them to the viscous-flow state. The rheological behavior of cellulose–poly-N-vinylpyrrolidone systems in N-methylmorpholine-N-oxide with various water contents was studied. At the poly-N-vinylpyrrolidone content of up to 30 wt % relative to cellulose and a temperature of 100–120°С, the systems under consideration are emulsions whose rheological behavior is determined by specific features of the dispersed phase, character of the interface, and its stability under shear flow. The poly-N-vinylpyrrolidone dispersed phase, as well as its preliminary immobilization on cellulose, does not worsen the rheological properties of the melt, which allows preparation of composite fibers under the conditions similar to those of the formation of hydrated cellulose fibers. The results of studying the fibers by scanning electron microscopy, X-ray diffraction, and differential scanning calorimetry show that the fibers have dense microfibrillar structure without additional ordering caused by the phase interaction; they also demonstrate intense interphase interaction of the components. The mechanical characteristics of the fibers, determined by tensile tests, are comparable to those of hydrated cellulose fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Woodings, C., in Encyclopedia of Polymer Science and Technology, Wiley, 2005, vol. 5, pp. 532–569.

    Google Scholar 

  2. Rogovina, S.Z. and Vikhoreva, G.A., Glycoconjug. J., 2006, vol. 23, pp. 611–618. https://doi.org/10.1007/s10719-006-8768-7

    Article  CAS  Google Scholar 

  3. Sionkowska, A., Prog. Polym. Sci., 2011, vol. 36, pp. 1254–1276. https://doi.org/10.1016/j.progpolymsci.2011.05.003

    Article  CAS  Google Scholar 

  4. Douglass, E.F., Avci, H., Boy, R., Rojas, O.J., and Kotek, R., Polym. Rev., 2018, vol. 158, pp. 102–163. https://doi.org/10.1080/15583724.2016.1269124

    Article  CAS  Google Scholar 

  5. Patent US 3447956, Publ. 1969.

  6. Lenz, J., Schurz, J., and Wrentschur, E., J. Appl. Polym. Sci., 1988, vol. 35, pp. 1987–2000. https://doi.org/10.1002/app.1988.070350801

    Article  CAS  Google Scholar 

  7. Coulsey, A. and Smith, S.B., Lenzinger Ber., 1996, vol. 75, pp. 51–61.

    Google Scholar 

  8. Kulichikhin, V.G. and Golova, L.K., in Nauchnye osnovy khimicheskoi tekhnologii uglevodov (Scientific Principles of Chemical Technology of Carbohydrates), Zakharov, A.G., Ed., Moscow: LKI, 2008, pp. 223–263.

    Google Scholar 

  9. Meister, F., Vorbach, D., Michels, C., Maron, R., Berghof, K., and Taeger, E., Lenzinger Ber., 1998, vol. 78, pp. 59–64.

    CAS  Google Scholar 

  10. Marsano, E., Corsini, P., Canetti, M., and Freddi, G., Int. J. Biol. Macromol., 2008, vol. 43, pp. 106–114. https://doi.org/10.1016/j.ijbiomac.2008.03.009

    Article  CAS  PubMed  Google Scholar 

  11. Kulichikhin, V.G., Golova, L.K., Makarov, I.S., Bondarenko, G.N., Berkovich, A.K., and Ilyin, S.O., Polym. Sci., Ser. C, 2016, vol. 58, no. 1, pp. 74–84. https://doi.org/10.1134/S1811238216010069 

    Article  CAS  Google Scholar 

  12. Zhang, S.A., Li, F.X., and Yu, J.Y., J. Eng. Fibers Fabr., 2011, vol. 6, no. 1, pp. 31–37. https://doi.org/10.1177/155892501100600105

    Article  CAS  Google Scholar 

  13. Kosan, B., Nechwatal, A., and Meister, F., Chem. Fibers Int., 2008, vol. 58, pp. 234–236.

    CAS  Google Scholar 

  14. Ingildeev, D., Hermanutz, F., Bredereck, K., and Effenberger, F., Macromol. Mater. Eng., 2012, vol. 297, pp. 585–594. https://doi.org/10.1002/mame.201100432

    Article  CAS  Google Scholar 

  15. Wendler, F., Meister, F., Wawro, D., Wesolowska, E., Ciechanska, D., Saake, B., Puls, J., Le Moigne, N., and Navard, P., Fibres Text. East. Eur., 2010, vol. 18, pp. 21–23.

    CAS  Google Scholar 

  16. Wendler, F., Persin, Z., Stana-Kleinschek, K., Reischl, M., Ribitsch, V., Bohn, A., Fink, H.-P., and Meister, F., Cellulose, 2011, vol. 18, pp. 1165–1178. https://doi.org/10.1007/s10570-011-9559-2

    Article  CAS  Google Scholar 

  17. Kabanov, V., in Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials, Decher, G. and Schlenoff, J.B., Eds., Wiley–VCH, 2002, pp. 47–86. https://doi.org/10.1002/3527600574.ch2

    Article  Google Scholar 

  18. Buehler, V., Polyvinylpyrrolidone Excipients for Pharmaceuticals, Berlin: Springer, 2005, pp. 102–124, 162–176, 217–219. https://doi.org/10.1007/b138598

    Article  Google Scholar 

  19. Teodorescu, M. and Bercea, M., Polymer¬–Plast. Technol. Eng., 2015, vol. 54, pp. 923–943. https://doi.org/10.1080/03602559.2014.979506

    Article  CAS  Google Scholar 

  20. Going, R.J., Sameoto, D.E., and Ayranci, C., J. Eng. Fibers Fabrics, 2015, vol. 10, no. 3, pp. 155–163. https://doi.org/10.1177/155892501501000310

    Article  CAS  Google Scholar 

  21. Voronova, M., Rubleva, N., Kochkina, N., Afineevskii, A., Zakharov, A., and Surov, O., Nanomaterials, 2018, vol. 8, no. 12, pp. 1011–1032. https://doi.org/10.3390/nano8121011

    Article  CAS  PubMed Central  Google Scholar 

  22. Hatch, K.M., Hlavatá, J., Paulett, K., Liavitskaya, T., Vyazovkin, S., and Stanishevsky, A.V., Int. J. Polym. Sci., 2019, ID 7103936. https://doi.org/10.1155/2019/7103936

    Article  CAS  Google Scholar 

  23. Huang, S., Zhou, L., Li, M.-C., Wu, Q., Kojima, Y., and Zhou, D., Materials, 2016, vol. 9, no. 7, pp. 523–537. https://doi.org/10.3390/ma9070523

    Article  CAS  PubMed Central  Google Scholar 

  24. Hasan, A., Waibhaw, G., Tiwari, S., Dharmalingam, K., Shukla, I., and Pandey, L.M., J. Biomed. Mater. Res., Part A, 2017, vol. 105, no. 90, pp. 2391–2404. https://doi.org/10.1002/jbm.a.36097

    Article  CAS  Google Scholar 

  25. Paillet, M., Cavaille, J.Y., Desbrieres, J., Dupeyre, D., and Peguy, A., Colloid Polym. Sci., 1993, vol. 271, pp. 311–321. https://doi.org/10.1007/BF00657413

    Article  CAS  Google Scholar 

  26. Massont, J.-F. and Manley, R.St.J., Macromolecules, 1991, vol. 24, pp. 6670–6679. https://doi.org/10.1021/ma00025a018

    Article  Google Scholar 

  27. Olabisi, O., Robeson, L.M., and Shaw, M.T., Polymer–Polymer Miscibility, Academic, 1979, pp. 31–47, 117–119, 206–210. https://doi.org 10.1021/ed058pa154.1

    Google Scholar 

  28. Manson, J. and Sperling, L., Polymer Blends and Composites, New York: Plenum, 1976, pp. 51–75, 271–297. https://doi.org/10.1007/978-1-4615-1761-0 

    Article  Google Scholar 

  29. Nishio, Y., Roy, S.K., and Manley, R.S.J., Polymers, 1987, vol. 28, no. 8, pp. 1385–1390. https://doi.org/10.1016/0032-3861(87)90456-3

    Article  CAS  Google Scholar 

  30. Nishio, Y. and Manley, R.S.J., Macromolecules, 1988, vol. 21, no. 5, pp. 1270–1277. https://doi.org/10.1021/ma00183a016

    Article  Google Scholar 

  31. Jolan, A.H. and Prudhomme, R.E., J. Appl. Polym. Sci., 1978, vol. 2, no. 9, pp. 2533–2542. https://doi.org/10.1002/app.1978.070220912

    Article  Google Scholar 

  32. Sashina, E.S. and Novoselov, N.P., in Nauchnye osnovy khimicheskoi tekhnologii uglevodov (Scientific Principles of Chemical Technology of Carbohydrates), Zakharov, A.G., Ed., Moscow: LKI, 2008, pp. 111–129.

    Google Scholar 

  33. Egorov, Yu.A., Makarova, V.V., Shandryuk, G.A., and Kulichikhin, V.G., Polym. Sci., Ser. A, 2022. https://doi.org/10.1134/S0965545X22010023 

    Article  Google Scholar 

  34. Kulichikhin, V., Makarov, I., Mironova, M., Golova, L., Vinogradov, M., Shandryuk, G., Levin, I., and Arkharova, N., Materials, 2020, vol. 13, no. 16, ID 3495. https://doi.org/10.3390/ma13163495

    Article  CAS  PubMed Central  Google Scholar 

  35. Fink, H.-P., Weigel, P., Purz, H.J., and Ganster, J., Prog. Polym. Sci., 2001, vol. 26, pp. 1473–1524. https://doi.org/10.1016/S0079-6700(01)00025-9

    Article  CAS  Google Scholar 

  36. Golova, L.K., Ross. Khim. Zh. (Zh. Ross. Khim. O–va. im. D.I. Mendeleeva), 2002, vol. XLVI, no. 1, pp. 49–57.

    Google Scholar 

  37. Polymer Blends: Processing, Morphology, and Properties, , E., Palumbo, R., and Kryszewski, M., Eds., New York: Springer, pp. 265–280. https://doi.org/10.1007/978-1-4613-3177-3

    Book  Google Scholar 

  38. Kulpinski, P., J. Appl. Polym. Sci., 2007, vol. 104, pp. 398–409. https://doi.org/10.1002/app.25150

    Article  CAS  Google Scholar 

  39. Jin, X., Liu, X., Liu, Q., and Li, Y., React. Funct. Polym., 2015, vols. 91–92, pp. 62–70. https://doi.org/10.1016/j.reactfunctpolym.2015.04.008

    Article  CAS  Google Scholar 

  40. Isogai, A., Usuda, M., Kato, T., Uryu, T., and Atalla, R.H., Macromolecules, 1989, vol. 22, pp. 3168–3172. https://doi.org/10.1021/ma00197a045

    Article  CAS  Google Scholar 

  41. Nishio, Y., Haratani, T., and Takahashi, T., J. Polym. Sci., Part B, 1990, vol. 28, pp. 355–376. https://doi.org/10.1002/polb.1990.090280308

    Article  CAS  Google Scholar 

  42. Kononova, S.V., Gubanova, G.N., Romashkov, K.A., Smirnova, V.E., Popov, E.N., Vlasova, E.N., Kruchinina, E.V., Gofman, I.F., Saifutdinova, I.F., and Romanov, D.P., Polym. Sci., Ser. A, 2016, vol. 58, no. 3, pp. 419–428. https://doi.org/10.1134/S0965545X16030111 

    Article  CAS  Google Scholar 

  43. Jauhari, J., Wiranata, S., Rahma, A., Nawawi, Z., and Sriyanti, I., Mater. Res. Express, 2019, vol. 6, no. 6, ID 064002. https://doi.org/10.1088/2053-1591/ab0b11

    Article  CAS  Google Scholar 

  44. Ioelovich, M., Athens J. Sci., 2016, vol. 3, no. 4, pp. 309–322.

    Article  Google Scholar 

  45. Bergenstrahle, M., Berglund, L.A., and Mazeau, K., J. Phys. Chem. B, 2007, vol. 111, pp. 9138–9145. https://doi.org/10.1021/jp072258i

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to E.B. Krut’ko, staff member of the analytical laboratory of the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, for performing elemental analysis of the samples.

Funding

The study was performed within the framework of Russian Science Foundation grant no. 17-79-30108 and of the government assignment for the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences using the equipment of the Center for Shared Use “Analytical Center for Problems of Deep Oil Refining and Petroleum Chemistry,” Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

Yu.A. Egorov: collection of published data and preparation of literature review, planning of experiments, preparation of composite fibers, and study of their mechanical properties; G.A. Shandryuk: thermal study of fibers; M.I. Vinogradov: rheological measurements; I.S. Levin: X-ray diffraction analysis of fibers; A.N. Tavtorkin: examination of fibers by scanning electron microscopy; V.G. Kulichikhin: development of methodology for preparing composite fibers and studying their properties.

Corresponding author

Correspondence to Yu. A. Egorov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 1, pp. 100–113, December, 2022 https://doi.org/10.31857/S0044461822010121

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorov, Y.A., Shandryuk, G.A., Vinogradov, M.I. et al. Composite Fibers Based on Hydrated Cellulose and Poly-N-vinylpyrrolidone, Prepared from Cellulose Solutions in N-Methylmorpholine-N-Oxide. Russ J Appl Chem 95, 100–112 (2022). https://doi.org/10.1134/S107042722201013X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042722201013X

Keywords:

Navigation