Skip to main content
Log in

Microwave-Stimulated Conversion of a Tar/Lignin Blend into Hydrocarbons in a Plasma-Catalytic Mode

  • Specific Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The study is devoted to the conversion of tar and iron-modified lignin under the action of microwave radiation. Lignin containing 0.5 wt % Fe absorbs about 80% of the supplied microwave radiation (2.45 GHz), which leads to a rapid increase in temperature in the reaction zone with the formation of plasma. During the conversion of a lignin (0.5 wt % Fe)/tar blend a wide range of gaseous and liquid hydrocarbons was produced, therewith the amount of light hydrocarbons was 75%. The solid carbon residue containing iron(III) oxide clusters is also characterized by the ability to absorb microwave radiation; it was employed as a catalyst and as a plasma generator in the 2nd cycle of the converting only tar under the influence of microwave radiation. The structure of nanosized iron-containing components was studied by transmission electron microscopy, X-ray diffraction, and Mössbauer spectroscopy, which made it possible to describe their genesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Hill, C.A.S., Wood Modification: Chemical, Thermal and Other Processes, John Wiley & Sons, 2007.

    Google Scholar 

  2. Arapova, O.V., Chistyakov, A.V., Tsodikov, M.V., and Moiseev, I.I., Petrol. Chem., 2020, vol. 60, no. 3, pp. 227–243. https://doi.org/10.1134/S0965544120030044 

    Article  CAS  Google Scholar 

  3. Schutyser, W., Renders, A.T., Van den Bosch, S., Koelewijn, S.F., Beckham, G.T., and Sels, B.F., Chem. Soc. Rev., 2018, vol. 47, no. 3, pp. 852–908. https://doi.org/10.1039/C7CS00566K

    Article  CAS  Google Scholar 

  4. Li, C., Zhao, X., Wang, A., Huber, G.W., and Zhang, T., Chem. Rev., 2015, vol. 115, no. 21, pp. 11559–11624. https://doi.org/10.1021/acs.chemrev.5b00155

    Article  CAS  PubMed  Google Scholar 

  5. Moiseev, I.I., Kinet. Catal., 2011, vol. 52, pp. 337–347. https://doi.org/10.1134/S0023158411030141 

    Article  CAS  Google Scholar 

  6. Moiseev, I.I., Kinetika Kataliz, 2016, vol. 57, no. 4, pp. 411–428. https://doi.org/10.1134/S0023158416040078

    Article  CAS  Google Scholar 

  7. Liu, W.-J., Jiang, H., and Yu, H.-Q., Green Chem., 2015, vol. 17, pp. 4888. https://doi.org/10.1039/C5GC01054C

    Article  CAS  Google Scholar 

  8. Edwards, P.P., Kuznetsov, V.L., David, W.I.F., and Brandon, N.P., Energy Policy, 2008, vol. 36, no. 12, pp. 4356–4362. https://doi.org/10.1016/j.enpol.2008.09.036

    Article  Google Scholar 

  9. Strassberger, Z., Tanase, S., and Rothenberg, G., RSC Adv., 2014, vol. 4, no. 48, pp. 25310–25318. https://doi.org/10.1039/C4RA04747H

    Article  CAS  Google Scholar 

  10. Khviyuzov, S.S., Bogolitsyn, K.G., Gusakova, M.A., and Zubov, I.N., Fundam. issled., 2015, no. 9, pp. 87–90.

    Google Scholar 

  11. Upton, B.M. and Kasko, A.M., Chem. Rev., 2015, vol. 116, no. 4, pp. 2275–2306. https://doi.org/10.1021/acs.chemrev.5b00345

    Article  CAS  PubMed  Google Scholar 

  12. Zakzeski, J., Bruijnincx, P.C., Jongerius, A.L., and Weckhuysen, B.M., Chem. Rev., 2010, vol. 110, no. 6, pp. 3552–3599. https://doi.org/10.1021/cr900354u

    Article  CAS  Google Scholar 

  13. Xu, C., Arancon, R.A.D., and Labidi, J., Chem. Soc. Rev., 2014, vol. 43, no. 22, pp. 7485–7500. https://doi.org/10.1039/C4CS00235K

    Article  CAS  PubMed  Google Scholar 

  14. Azadi, P., Inderwildi, O.R., Farnood, R., and King, D.A., Renewable Sustainable Energy Rev., 2013, vol. 21, pp. 506–523. https://doi.org/10.1016/j.rser.2012.12.022

    Article  CAS  Google Scholar 

  15. Joffres, B., Laurenti, D., Charon, N., Daudin, A., Quignard, A., and Geantet, C., Oil & Gas Sci. Technol., 2013, vol. 68, no. 4, pp. 753–763. https://doi.org/10.2516/ogst/2013132

    Article  CAS  Google Scholar 

  16. Tsodikov, M.V., Perederii, M.A., Chistyakov, A.V., Konstantinov, G.I., and Martynov, B.I., Solid Fuel Chem., 2012, vol. 46, pp. 37–44. https://doi.org/10.3103/S0361521912010132

    Article  CAS  Google Scholar 

  17. Tsodikov, M.V., Konstantinov, G.I., Chistyakov, A.V., Arapova, O.V., and Perederii, M.A., Chem. Eng. J., 2016, vol. 292, pp. 315–320. https://doi.org/10.1016/j.cej.2016.02.028

    Article  CAS  Google Scholar 

  18. Tsodikov, M.V., Ellert, O.G., Nikolaev, S.A., Arapova, O.V., Konstantinov, G.I., Bukhtenko, O.V., and Vasilkov A.Yu., Chem. Eng. J., 2017, vol. 309, pp. 628–637. https://doi.org/10.1016/j.cej.2016.10.031

    Article  CAS  Google Scholar 

  19. Tsodikov, M.V., Ellert, O.G., Nikolaev, S.A., Arapova, O.V., Bukhtenko, O.V., Maksimov, Yu.V., Kirdyankin, D.I., and Vasil’kov, A.Yu., J. Nanopart. Res., 2018, vol. 20, no. 3, pp. 86–101. https://doi.org/10.1007/s11051-018-4185-7

    Article  CAS  Google Scholar 

  20. Kazitsyna, L.A. and Kupletskaya, N.B., Primenenie UF-, IK-, YaMR- i Mass-spektrometrii v organicheskoi khimii (Application of UV-, IR-, NMR- and Mass-Spectrometry in Organic Chemistry), Moscow: Izd. Moscow State Univ., 1979.

    Google Scholar 

  21. Tsodikov, M.V., Chistyakov, A.V., Konstantinov, G.I., Borisov, R.S., Bondarenko, G.N., and Arapova, O.V., Petrol. Chem., 2021, vol. 61, no. 7, pp. 721–728. https://doi.org/10.1134/S0965544121070070

    Article  CAS  Google Scholar 

  22. Nikolaev, S.A., Tsodikov, M.V., Chistyakov, A.V., Zharova, P.A., and Ezzgelenko, D.I., J. Catal., 2019, vol. 369, pp. 501–517. https://doi.org/10.1016/j.jcat.2018.11.017

    Article  CAS  Google Scholar 

  23. Barnakov, C.N., Khokhlova, G.P., Popova, A.N., Sozinov, S.A., and Ismagilov, Z.R., Eurasian Chem.-Tech. J., 2015, vol. 17, no. 2, pp. 87–93. https://doi.org/10.18321/ectj198

    Article  Google Scholar 

Download references

Funding

The study was supported by a grant from the Russian Science Foundation (project no. 21-13-00457).

Author information

Authors and Affiliations

Authors

Contributions

R.S. Borisov: study by chromatomass-spectrometry of liquid products of the tar and lignin conversion; I.A. Levin: X-ray diffraction analysis; Yu.V. Maksimov: study by the method of Mössbauer spectroscopy; M.V. Tsodikov: fractional analysis of the products of the tar and lignin conversion; A.V. Chistyakov: plasma-catalytic experiments, chromatographic analysis of gaseous products; G.I. Konstantinov: plasma-catalytic experiments, carrying out of the iron-containing clusters deposition on the lignin surface; S.A. Nikolaev: study of samples of the original lignin and carbon residues of its destruction by transmission electron microscopy; A.E. Gekhman: analysis of GC-MS data of liquid products of the lignin and tar conversion.

Corresponding author

Correspondence to A. V. Chistyakov.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 11, pp. 1336–1348, December, 2021 https://doi.org/10.31857/S004446182110008X

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsodikov, M.V., Chistyakov, A.V., Konstantinov, G.I. et al. Microwave-Stimulated Conversion of a Tar/Lignin Blend into Hydrocarbons in a Plasma-Catalytic Mode. Russ J Appl Chem 94, 1513–1524 (2021). https://doi.org/10.1134/S1070427221110069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221110069

Keywords:

Navigation