Skip to main content
Log in

Synthesis and Characterization of Carboxymethyl Cellulose-graft-Poly(Acrylamide-co-Crotonic Acid) Hydrogel: Matrix for Ammonium Nitrate Release, as Agrochemical

  • Macromolecular Compounds and Polymeric Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

In this work, acrylamide (AAm) and crotonic acid (CA) were grafted onto carboxymethyl cellulose (CMC) by free-radical polymerization in aqueous solution at 60°C, using potassium persulfate (KPS) as an initiator and N,N′-methylenebisacrylamide (MBAA) as a cross-linking agent. The prepared hydrogels were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The swelling behavior of hydrogels was studied as a function of CA amount, CMC composition, pH, and temperature of medium. The obtained results indicated that the degree of swelling is enhanced with increasing CMC amount, and is dependent on temperature and pH. To evaluate the controlled release potential of the hydrogel, NH4NO3 fertilizer was incorporated in the polymeric matrix by in situ polymerization method. The results revealed that the fertilizer release kinetics is affected by CMC, CA, and NH4NO3 compositions. The fertilizer release mechanism was determined by comparing the release data with the zero-order, first-order, Higuchi and Korsmeyer–Peppas kinetic models. Results indicated that the Korsmeyer–Peppas model can be employed to elucidate the release characteristics of the fertilizer and that Fickian diffusion dominates the release mechanism process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Hebeish, A., Higazy, A., El-Shafei, A., and Sharaf, S., Carbohydr. Polym., 2010, vol. 79, no. 1, pp. 60–69.

    Article  CAS  Google Scholar 

  2. Wang, W., Wang, Q., and Wang, A., Macromol. Res., 2011, vol. 19, no. 1, pp. 57–65.

    Article  CAS  Google Scholar 

  3. Vil’danova, R.R., Sigaeva, N.N. Kukovinets, O.S., et al., Russ. J. Appl. Chem., 2014, vol. 87, no. 10, pp. 1547–1557.

    Article  Google Scholar 

  4. Shahbazi, M., Ahmadi, S.J., Seif, A., and Rajabzadeh, G., Food Hydrocoll., 2016, vol. 61, pp. 378–389.

    Article  CAS  Google Scholar 

  5. Khan, H., Chaudhary, J.P., and Meena, R., Int. J. Biol. Macromol., 2019, vol. 124, pp. 1220–1229.

    Article  CAS  Google Scholar 

  6. Raafat, A.I., Eid, M., and El-Arnaouty, M.B., Nucl. Instrum. Methods Phys. Res., B, 2012, vol. 283, pp. 71–76.

    Article  CAS  Google Scholar 

  7. Lina , T., Baib, Q., Penga, J., et al. , Carbohydr. Polym., 2018, vol. 200, pp. 72–81.

    Article  Google Scholar 

  8. Mansurova, R.R., Safronova, A.P., Lakizaa, N.V., et al., Russ. J. Appl. Chem., 2017, vol. 90, no. 10, pp. 1712–11721.

    Article  Google Scholar 

  9. MohyEldin, M.S., El-Sherif, H.M., Soliman, E.A., et al., J. Appl. Polym. Sci., 2011, vol. 122, no. 1, pp. 469–479.

    Article  Google Scholar 

  10. Pakdel, P.M., and Peighambardoust, S.J., Carbohydr. Polym., 2018, vol. 201, pp. 264–279.

    Article  Google Scholar 

  11. Faten, I.A., Russ. J. Appl. Chem., 2016, vol. 89, no. 10, pp. 1673–1680.

    Article  Google Scholar 

  12. Bennour, S., and Louzri, F., Adv. Chem., 2014, vol. 2014, pp. 1–10.

    Article  Google Scholar 

  13. Pulat, M., and Çetin, M., J. Bioact. Compat. Polym., 2008, vol. 23, no. 4, pp. 305–318.

    Article  CAS  Google Scholar 

  14. Ulery, B.D., Nair, L.S. and Laurencin, C.T., J. Polym. Sci., Part B: Polym. Phys., 2011, vol. 49, no. 12, pp. 832–864.

    Article  CAS  Google Scholar 

  15. Schmidt, U., Jorsch, C., Guenther, M., and Gerlach, G., J. Sens. Sens. Syst., 2016, vol. 5, pp. 409–417.

    Article  Google Scholar 

  16. Louzri, F., and Bennour, S., J. Polym. Eng., 2017, vol. 38, pp. 437–447.

    Article  Google Scholar 

  17. Snyder, C.S., Bruulsema, T.W., Jensen, T.L., and Fixen, P.E., Agric. Ecosyst. Environ., 2009, vol. 133, no. 3–4, pp. 247–266.

    Article  CAS  Google Scholar 

  18. Huang,J., Xu, C., Ridoutt, B.G., Wang, X., et al, J. Clean. Prod., 2017, vol. 159, pp. 171–179.

    Article  Google Scholar 

  19. Rajakumar, R., and Sankar, J., Int. J. Appl. Pure Sci. Agric., 2016, vol. 2, pp. 163–172.

    Google Scholar 

  20. Louzri, F., and Bennour, S., J. Polym. Mater., 2020, vol. 37, pp. 55–76.

    Article  Google Scholar 

  21. Alexeev, V., Analyse Qualitative, Editions, Mir: Moscow, 1980.

    Google Scholar 

  22. Yu, H., Fu, G., and He, B., Cellulose, 2007, vol. 14, no. 2, pp. 99–107.

    Article  CAS  Google Scholar 

  23. Luo, Y., Zhang, K., Wei, Q., et al., ActaBiomater., 2009, vol. 5, no. 1 pp. 316–327.

    Article  CAS  Google Scholar 

  24. Li, W., Sun, B., and Wu, P., Carbohydr. Polym., 2009, vol. 78, no. 3, pp. 454–461.

    Article  CAS  Google Scholar 

  25. Nakagawa, I., and Walter, J.L., J. Chem. Phys., 1969, vol. 51, no. 4, pp. 1389–1397.

    Article  CAS  Google Scholar 

  26. El-sayed, S., Mahmoud, K.H., Fatah, A.A., and Hassen, A., Phys. B Phys. Condens. Matter., 2011, vol. 406, no. 21, pp. 4068–4076.

    Article  CAS  Google Scholar 

  27. Pettignano, A, Charlot, A., and Fleury, E., Polymers, 2019, vol. 11, no. 7, pp. 1227–1244.

    Article  Google Scholar 

  28. Capanema, N.S.V., Mansur, A.A.P., De Jesus, A.C., et al., Int. J. Biol. Macromol., 2018, vol. 106, pp. 1218–1234.

    Article  CAS  Google Scholar 

  29. Villetti, M.A., Crespo, J.S., Soldi, M.S., et al., J. Ther. Anal. Calorim., 2002, vol. 67, no. 2, pp. 295–303.

    Article  CAS  Google Scholar 

  30. Nayak, B.R. and and Singh, R.P., J. Appl. Polym. Sci., 2001, vol. 81, no. 7, pp. 1776–1785.

    Article  CAS  Google Scholar 

  31. Żeliazkow, M.Ś., Polym. Degrad. Stab., 2006, vol. 91, no. 6, pp. 1233–1239.

    Article  Google Scholar 

  32. Bajpai, A.K. and Giri, A., React. Funct. Polym., 2002, vol. 53, no. 2–3 , pp. 125–141.

    Article  CAS  Google Scholar 

  33. Brazel, C.S., and Peppas, N.A., Macromolecules, 1995, vol. 28, no. 24 , pp. 8016–8020.

    Article  CAS  Google Scholar 

  34. Suo, A., Qian, J., Yu, Y., et al., Appl. Polym. Sci., 2007, vol. 103, no. 3, pp. 1382–1388.

    Article  CAS  Google Scholar 

  35. Karadağ, E., Saraydin, D., Çaldiran, Y., et al., Polym. Adv. Technol., 2000, vol. 11, no. 2, pp. 59–68.

    Article  Google Scholar 

  36. Wang, H., Wang, Z., and Zhu, B., React. Funct. Polym., 2007, vol. 67, no. 3, pp. 225–232.

    Article  CAS  Google Scholar 

  37. Elving, P.J., Markowitz, J.M., and Rosenthal, I., Anal. Chem., 1956, vol. 28, no. 7, pp. 1179–1180.

    Article  CAS  Google Scholar 

  38. Gouda, R., Baishya, H., and Qing, Z., J. Dev. Drugs, 2017, vol. 6, no. 2 , pp. 1–8.

    Google Scholar 

  39. Ritger, P.L., and Peppas, N.A., J. Control. Release, 1987, vol. 5, no. 1, pp. 23–36

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadjia Bennour.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daoud, L., Bennour, S. Synthesis and Characterization of Carboxymethyl Cellulose-graft-Poly(Acrylamide-co-Crotonic Acid) Hydrogel: Matrix for Ammonium Nitrate Release, as Agrochemical. Russ J Appl Chem 94, 1499–1512 (2021). https://doi.org/10.1134/S1070427221110057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221110057

Keywords:

Navigation