Skip to main content
Log in

Nanocomposites of Graphene Oxide and Metal-Organic Frameworks

  • Reviews
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The state of the art in the field of preparing nanocomposites of graphene oxide with metal-organic frameworks and of studying their structure and properties is discussed. The most efficient method for preparing such nanocomposites is in situ reaction of graphene oxide with precursors of metal-organic frameworks. Electrochemical, mechanochemical, and sonochemical synthesis methods for preparing the nanocomposites were also developed. The post-synthetic method involving preparation of the material from the graphene oxide and metal-organic frameworks prepared in advance is less widely used. The composites are characterized by a sandwich-like structure in which the crystal structure of the initial metal-organic framework is preserved. The composites show promise because of possible synergistic effects between the porous solid (controlled surface area, selectivity, catalytic activity, etc.) and graphene oxide (conductivity, light absorption, mechanical stability, etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Dzhardimalieva, G.I. and Uflyand, I.E., RSC Adv., 2017, vol. 7, no. 67, pp. 42242–42288. https://doi.org/10.1039/c7ra05302a

    Article  CAS  Google Scholar 

  2. Shang, S., Tao, Z., Yang, C., Hanif, A., Li, L., Tsang, D.C.W., Gu, Q., and Shang, J., Chem. Eng. J., 2020, vol. 393, ID 124666. https://doi.org/10.1016/j.cej.2020.124666

    Article  CAS  Google Scholar 

  3. Zhinzhilo, V.A., Lebedintseva, E.A., Naumkina, V.N., and Uflyand, I.E., Russ. J. Appl. Chem., 2021, vol. 94, no. 8, pp. 1059–1065. https://doi.org/10.1134/S107042722108005X 

    Article  CAS  Google Scholar 

  4. Dzhardimalieva, G.I., Baimuratova, R.K., Knerelman, E.I., Davydova, G.I., Kudaibergenov, S.E., Kharissova, O.V., Zhinzhilo, V.A., and Uflyand, I.E., Polymers, 2020, vol. 12, no. 5, ID 1024. https://doi.org/10.3390/polym12051024

    Article  CAS  PubMed Central  Google Scholar 

  5. Moisés Cedeño Morales, E., Méndez-Rojas, M.A., Torres-Martínez, L.M., Garay-Rodríguez, L.F., López, I., Uflyand, I.E., and Kharisov, B.I., Polyhedron, 2021, vol. 210, ID 115517. https://doi.org/10.1016/j.poly.2021.115517

    Article  CAS  Google Scholar 

  6. Luo, S. and Wang, J., Environ. Sci. Pollut. Res., 2018, vol. 25, no. 6, pp. 5521–5528. https://doi.org/10.1007/s11356-017-0932-z

    Article  CAS  Google Scholar 

  7. Mahmoodi, N.M., Oveisi, M., and Asadi, E., J. Clean. Prod., 2019, vol. 211, pp. 198–212. https://doi.org/10.1016/j.jclepro.2018.11.136

    Article  CAS  Google Scholar 

  8. Taima-Mancera, I., Rocío-Bautista, P., Pasán, J., Ayala, J., Ruiz-Pérez, C., Afonso, A., Lago, A., and Pino, V., Molecules, 2018, vol. 23, ID 2869. https://doi.org/10.3390/molecules23112869

    Article  CAS  PubMed Central  Google Scholar 

  9. Eltaweil, A.S., Elshishini, H.M., Ghatass, Z.F., and Elsubruiti, G.M., Powder Technol., 2021, vol. 379, pp. 407–416. https://doi.org/10.1016/j.powtec.2020.10.084

    Article  CAS  Google Scholar 

  10. Eltaweil, A.S., Abd El-Monaem, E.M., El-Subruiti, G.M., Abd El-Latif, M.M., and Omer, A.M., RSC Adv., 2020, vol. 10, no. 32, pp. 19008–19019. https://doi.org/10.1039/D0RA02424D

    Article  CAS  Google Scholar 

  11. Chen, G., Luo, J., Cai, M., Qin, L., Wang, Y., Gao, L., Huang, P., Yu, Y., Ding, Y., Dong, X., Yin, X., and Ni, J., Molecules, 2019,vol. 24, no. 18, ID 3369. https://doi.org/10.3390/molecules24183369

    Article  CAS  Google Scholar 

  12. Wang, Y., Zhang, W., Wu, X., Luo, C., Liang, T., and Yan, G., J. Magn. Magn. Mater., 2016, vol. 416, pp. 226–230. https://doi.org/10.1016/j.jmmm.2016.04.093

    Article  CAS  Google Scholar 

  13. Islam, D.A., Barman, K., Jasimuddin, S., and Acharya, H., ChemElectroChem, 2017, vol. 4, no. 12, pp. 3110–3118. https://doi.org/10.1002/celc.201700883

    Article  CAS  Google Scholar 

  14. Govarthanan, M., Mythili, R., Kim, W., Alfarraj, S., and Alharbi, S.A., J. Hazard. Mater., 2021, vol. 414, ID 125522. https://doi.org/10.1016/j.jhazmat.2021.125522

    Article  CAS  PubMed  Google Scholar 

  15. Zhou, X., Huang, W., Liu, J., Wang, H., and Li, Z., Chem. Eng. Sci., 2017, vol. 167, pp. 98–104. https://doi.org/10.1016/j.ces.2017.03.050

    Article  CAS  Google Scholar 

  16. Li, W., Chuah, C.Y., Yang, Y., and Bae, T.-H., Micropor. Mesopor. Mater., 2018, vol. 265, pp. 35–42. https://doi.org/10.1016/j.micromeso.2018.01.036

    Article  CAS  Google Scholar 

  17. Xu, W.-T., Ma, L., Ke, F., Peng, F.-M., Xu, G.-S., Shen, Y.-H., Zhu, J.-F., Qiu, L.-G., and Yuan, Y.-P., Dalton Trans., 2014, vol. 43, pp. 3792–3798. https://doi.org/10.1039/C3DT52574K

    Article  CAS  PubMed  Google Scholar 

  18. Liu, N., Huang, W., Zhang, X., Tang, L., Wang, L., Wang, Y., and Wu, M., Appl. Catal. B, 2018, vol. 221, pp. 119–128. https://doi.org/10.1016/j.apcatb.2017.09.020

    Article  CAS  Google Scholar 

  19. Cai, X., Lin, J., and Pang, M., Cryst. Growth Des., 2016, vol. 16, no. 7, pp. 3565–3568. https://doi.org/10.1021/acs.cgd.6b00313

    Article  CAS  Google Scholar 

  20. Azhdari, R., Mojtaba, S., Alireza, S., and Bahrani, S., J. Environ. Chem. Eng., 2019, vol. 7, no. 6, ID 103437. https://doi.org/10.1016/j.jece.2019.103437

    Article  CAS  Google Scholar 

  21. Hu, Y., Wei, J., Liang, Y., Zhang, H., Zhang, X., Shen, W., and Wang, H., Angew. Chem. Int. Ed., 2016, vol. 55, no. 6, pp. 2048–2052. https://doi.org/10.1002/anie.201509213

    Article  CAS  Google Scholar 

  22. Jayaramulu, K., Datta, K.K., Rösler, C., Petr, M., Otyepka, M., Zboril, R., and Fischer, R.A., Angew. Chem. Int. Ed., 2016, vol. 55, no. 3, pp. 1178−1182. https://doi.org/10.1002/anie.201507692

    Article  CAS  Google Scholar 

  23. Abdi, J., Vossoughi, M., Mahmoodi, N.M., and Alemzadeh, I., Chem. Eng. J., 2017, vol. 326, pp. 1145–1158. https://doi.org/10.1016/j.cej.2017.06.054

    Article  CAS  Google Scholar 

  24. Yu, G., Xia, J., Zhang, F., and Wang, Z., J. Electroanal. Chem., 2017, vol. 801, pp. 496–502. https://doi.org/10.1016/j.jelechem.2017.08.038

    Article  CAS  Google Scholar 

  25. Garg, N., Kumar, M., Kumari, N., Deep, A., and Sharma, A.L., ACS Omega, 2020, vol. 5, no. 42, pp. 27492–27501. https://doi.org/10.1021/acsomega.0c03981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cai, J., Lu, J.-Y., Chen, Q.-Y., Qu, L.-L., Lu, Y.-Q., and Gao, G.-F., New J. Chem., 2017, vol. 41, no. 10, pp. 3882–3886. https://doi.org/10.1039/C7NJ00501F

    Article  CAS  Google Scholar 

  27. Liu, X., Sun, T., Hu, J., and Wang, S., J. Mater. Chem. A, 2016, vol. 4, no. 10, pp. 3584–3616. https://doi.org/10.1039/C5TA09924B

    Article  CAS  Google Scholar 

  28. Somayajulu Rallapalli, P.B., Raj, M.C., Patil, D.V., Prasanth, K.P., Somani, R.S., and Bajaj, H.C., Int. J. Energy Res., 2013, vol. 37, no. 7, pp. 746–753. https://doi.org/10.1002/er.1933

    Article  CAS  Google Scholar 

  29. Robati, D., Mirza, B., Rajabi, M., Moradi, O., Tyagi, I., Agarwal, S., and Gupta, V.K., Chem. Eng. J., 2016, vol. 284, pp. 687–697. https://doi.org/10.1016/j.cej.2015.08.131

    Article  CAS  Google Scholar 

  30. Strzelczyk, R., Giusca, C.E., Perrozzi, F., Fioravanti, G., Ottaviano, L., and Kazakova, O., Carbon, 2017, vol. 122, pp. 168–175. https://doi.org/10.1016/j.carbon.2017.06.035

    Article  CAS  Google Scholar 

  31. Ha, H. and Ellison, C., Korean J. Chem. Eng., 2018, vol. 35, no. 2, pp. 303–317. https://doi.org/10.1007/s11814-017-0250-7

    Article  CAS  Google Scholar 

  32. Pei, S., Wei, Q., Huang, K., Cheng, H.M., and Ren, W., Nat. Commun., 2018, vol. 9, ID 145. https://doi.org/10.1038/s41467-017-02479-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu, W. and Speranza, G., ACS Omega, 2021, vol. 6, no. 9, pp. 6195–6205. https://doi.org/10.1021/acsomega.0c05578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Krishnan, S.K., Singh, E., Singh, P., Meyyappan, M., and Nalwa, H.S., RSC Adv., 2019, vol. 9, no. 16, pp. 8778–8881. https://doi.org/10.1039/C8RA09577A

    Article  CAS  Google Scholar 

  35. Wan, Y., Xu, W., Ren, X., Wang, Y., Dong, B., and Wang, L., Front. Bioeng. Biotechnol., 2020, vol. 8, ID 628. https://doi.org/10.3389/fbioe.2020.00628

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wan, Y., Wang, J., Huang, F., Xue, Y., Cai, N., Liu, J., Chen, W., and Yu, F., RSC Adv., 2018, vol. 8, no. 60, pp. 34552–34559. https://doi.org/10.1039/C8RA05873C

    Article  CAS  Google Scholar 

  37. Eris, S., Daşdelen, Z., Yıldız, Y., and Sen, F., Int. J. Hydrogen Energy, 2018, vol. 43, no. 3, pp. 1337–https://doi.org/10.1016/j.ijhydene.2017.11.051

    Article  CAS  Google Scholar 

  38. Bu, F., Feng, X., Jiang, T., Shakir, I., and Xu, Y., Chem. Eur. J., 2017, vol. 23, no. 35, pp. 8358–8363. https://doi.org/10.1002/chem.201700742

    Article  CAS  PubMed  Google Scholar 

  39. Fan, M., Liao, D., Aly Aboud, M.F., Shakir, I., and Xu, Y., Angew. Chem., Int. Ed., 2020, vol. 59, no. 21, pp. 8247–8254. https://doi.org/10.1002/anie.202000352

    Article  CAS  Google Scholar 

  40. Muschi, M. and Serre, C., Coord. Chem. Rev., 2019, vol. 387, pp. 262–272. https://doi.org/10.1016/j.ccr.2019.02.017

    Article  CAS  Google Scholar 

  41. Gao, J., He, P., Yang, T., Wang, X., Zhou, L., He, Q., Jia, L., Deng, H., Zhang, H., Jia, B., and He, X., J. Electroanal. Chem., 2020, vol. 861, ID 113954. https://doi.org/10.1016/j.jelechem.2020.113954

    Article  CAS  Google Scholar 

  42. Ahsan, M.A., Jabbari, V., Islam, M.T., Castro, E., Kim, H., Curry, M.L., Valles-Rosales, D.J., and Noveron, J.C., Sci. Total Environ., 2020, vol. 698, ID 134214. https://doi.org/10.1016/j.scitotenv.2019.134214

    Article  CAS  PubMed  Google Scholar 

  43. Ahsan, M.A., Jabbari, V., Islam, M.T., Turley, R.S., Dominguez, N., Kim, H., Castro, E., Hernandez-Viezcas, J.A., Curry, M.L., Lopez, J., Gardea-Torresdey, J.L., and Noveron, J.C., Sci. Total Environ., 2019, vol. 673, ID 306–317. https://doi.org/10.1016/j.scitotenv.2019.03.219

    Article  CAS  PubMed  Google Scholar 

  44. Sun, Y., Chen, M., Liu, H., Zhu, Y., Wang, D., and Yan, M., Appl. Surf. Sci., 2020, vol. 525, ID 146614. https://doi.org/10.1016/j.apsusc.2020.146614

    Article  CAS  Google Scholar 

  45. Wang, K., Wu, J., Zhu, M., Zheng, Y., and Tao, X., J. Solid State Chem., 2020, vol. 284, ID 121200. https://doi.org/10.1016/j.jssc.2020.121200

    Article  CAS  Google Scholar 

  46. Suma, B P. and Pandurangappa, M., J. Solid State Electrochem., 2020, vol. 24, no. 1, pp. 69–79. https://doi.org/10.1007/s10008-019-04454-8

    Article  CAS  Google Scholar 

  47. Benzaqui, M., Pillai, R.S., Sabetghadam, A., Benoit, V., Normand, P., Marrot, J., Menguy, N., Montero, D., Shepard, W., Tissot, A., Martineau-Corcos, C., Sicard, C., Mihaylov, M., Carn, F., Beurroies, I., Llewellyn, P.L., De Weireld, G., Hadjiivanov, K., Gascon, J., Kapteijn, F., Maurin, G., Steunou, N., and Serre, C., Chem. Mater., 2017, vol. 29, no. 24, pp. 10326–10338. https://doi.org/10.1021/acs.chemmater.7b03203

    Article  CAS  Google Scholar 

  48. Seoane, B., Castellanos, S., Dikhtiarenko, A., Kapteijn, F., and Gascon, J., Coord. Chem. Rev., 2016, vol. 307, part 2, pp. 147–187. https://doi.org/10.1016/j.ccr.2015.06.008

    Article  CAS  Google Scholar 

  49. Kumar., P., Vellingiri., K., Kim., K.H., Brown., R.J.C., and Manos, M.J., Micropor. Mesopor. Mater., 2017, vol. 253, pp. 251–265. https://doi.org/10.1016/j.micromeso.2017.07.003

    Article  CAS  Google Scholar 

  50. Yang, Y., Wang, W., Li, H., Jin, X., Wang, H., Zhang, L., and Zhang, Y., Mater. Lett., 2017, vol. 197, pp. 17–20. https://doi.org/10.1016/j.matlet.2017.03.041

    Article  CAS  Google Scholar 

  51. He, S., Li, Z., Ma, L., Wang, J., and Yang, S., New J. Chem., 2017, vol. 41, no. 23, pp. 14209–14216. https://doi.org/10.1039/C7NJ02846F

    Article  CAS  Google Scholar 

  52. Ahmad, N., Samavati, A., Nordin, N.A.H.M., Jaafar, J., Ismail, A.F., and Malek, N.A.N.N., Separ. Purif. Technol., 2020, vol. 239, ID 116554. https://doi.org/10.1016/j.seppur.2020.116554

    Article  CAS  Google Scholar 

  53. Gu, J., Fan, H., Li, C., Caro, J., and Meng, H., Angew. Chem. Int. Ed., 2019, vol. 58, no. 16, pp. 5297–5301. https://doi.org/10.1002/anie.201814487

    Article  CAS  Google Scholar 

  54. Li, J., Wu, Q., Wang, X., Chai, Z., Shi, W., Hou, J., Hayat, T., Alsaedi, A., and Wang, X., J. Mater. Chem. A, 2017, vol. 5, no. 38, pp. 20398−20406. https://doi.org/10.1039/C7TA06462D

    Article  CAS  Google Scholar 

  55. Firouzjaei, M.D., Shamsabadi, A.A., Sharifian, Gh.M., Rahimpour, A., and Soroush, M., Adv. Mater. Interfaces, 2018, vol. 5, no. 11, ID 1701365. https://doi.org/10.1002/admi.201701365

    Article  CAS  Google Scholar 

  56. Chen, M., Chen, J., Liu, Y., Liu, J., Li, L., Yang, B., and Ma, L., Colloids Surf. A, 2019, vol. 578, ID 123553. https://doi.org/10.1016/j.colsurfa.2019.06.019

    Article  CAS  Google Scholar 

  57. Wang, X., Shi, Y., Shan, J., Zhou, H., and Li, M., Ionics, 2020, vol. 26, no. 6, pp. 3135–3146. https://doi.org/10.1007/s11581-019-03260-6

    Article  CAS  Google Scholar 

  58. Khan, N.A., Hasan, Z., and Jhung, S.H., Coord. Chem. Rev., 2018, vol. 376, pp. 20–45. https://doi.org/10.1016/j.ccr.2018.07.016

    Article  CAS  Google Scholar 

  59. Dastbaz, A., Karimi-Sabet, J., and Moosavian, M.A., Chem. Eng. Process. Process Intens., 2019, vol. 135, pp. 245–257. https://doi.org/10.1016/j.cep.2018.11.004

    Article  CAS  Google Scholar 

  60. Zhao, S., Chen, D., Wei, F., Chen, N., Liang, Z., and Luo, Y., Ultrason. Sonochem., 2017, vol. 39, pp. 845–852. https://doi.org/10.1016/j.ultsonch.2017.06.013

    Article  CAS  PubMed  Google Scholar 

  61. Zhao, S., Chen, D., Wei, F., Chen, N., Liang, Z., and Luo, Y., J. Chem. Technol. Biotechnol., 2018, vol. 93, no. 3, pp. 698–709. https://doi.org/10.1002/jctb.5419

    Article  CAS  Google Scholar 

  62. Dastbaz, A., Karimi-Sabet, J., and Moosavian, M.A., Int. J. Hydrogen Energy, 2019, vol. 44, no. 48, pp. 26444–26458. https://doi.org/10.1016/j.ijhydene.2019.08.116

    Article  CAS  Google Scholar 

  63. Wei, F., Ren, Q., Liang, Z., and Chen, D., ChemistrySelect, 2019, vol. 4, no. 19, pp. 5755–5762. https://doi.org/10.1002/slct.201900363

    Article  CAS  Google Scholar 

  64. Firouzjaei, M.D., Afkhami, F.A., Esfahani, M.R., Turner, C.H., and Nejati, S., J. Water Process Eng., 2020, vol. 34, ID 101180. https://doi.org/10.1016/j.jwpe.2020.101180

    Article  Google Scholar 

  65. Bu, J., Yuan, L., Ren, Y., Lv, Y., Meng, Y., and Peng, X., Can. J. Chem., 2020, vol. 98, no. 2, pp. 90–97. https://doi.org/10.1139/cjc-2019-0368

    Article  CAS  Google Scholar 

  66. Yexin, D., Meng, L., Fang, L., Ming, X., Yongqiang, W., and Chaocheng, Z., Environ. Sci. Pollut. Res. Int., 2019, vol. 26, no. 3, pp. 2477–2491. https://doi.org/10.1007/s11356-018-3657-8

    Article  CAS  Google Scholar 

  67. Jamil, N., Othman, N.H., Mohd Zaini, M.H., Alias, N.H., Shahruddin, M.Z., Lau, W.J., Ismail, A.F., and Md Nordin, N.A.H., J. Iran. Chem. Soc., 2021, vol. 18, no. 2, pp. 363–373. https://doi.org/10.1007/s13738-020-02032-8

    Article  CAS  Google Scholar 

  68. Zhang, F., Liu, L., Tan, X., Sang, X., Zhang, J., Liu, C., Zhang, B., Han, B., and Yang, G., Soft Matter, 2017, vol. 13, no. 40, pp. 7365–7370. https://doi.org/10.1039/C7SM01567D

    Article  CAS  PubMed  Google Scholar 

  69. Meng, J., Chen, X., Tian, Y., Li, Z., and Zheng, Q., Chem. Eur. J., 2017, vol. 23, no. 69, pp. 17521–17530. https://doi.org/10.1002/chem.201702573

    Article  CAS  PubMed  Google Scholar 

  70. Zheng, Y., Zheng, S., Xue, H., and Pang, H., Adv. Funct. Mater., 2018, vol. 28, no. 47, ID 1804950. https://doi.org/10.1002/adfm.201804950

    Article  CAS  Google Scholar 

  71. Anastasiou, S., Bhoria, N., Pokhrel, J., Reddy, K.S.K., Srinivasakannan, C., Wang, K., and Karanikolos, G.N., Mater. Chem. Phys., 2018, vol. 212, pp. 513–522. https://doi.org/10.1016/j.matchemphys.2018.03.064

    Article  CAS  Google Scholar 

  72. Pokhrel, J., Bhoria, N., Anastasiou, S., Tsoufis, T., Gournis, D., Romanos, G., and Karanikolos, G.N., Micropor. Mesopor. Mater., 2018, vol. 267, pp. 53–67. https://doi.org/10.1016/j.micromeso.2018.03.012

    Article  CAS  Google Scholar 

  73. Jabbari, V., Veleta, J.M., Zarei-Chaleshtori, M., Gardea-Torresdey, J., and Villagrán, D., Chem. Eng. J., 2016, vol. 304, pp. 774–783. https://doi.org/10.1016/j.cej.2016.06.034

    Article  CAS  Google Scholar 

  74. Cheng, G., Wang, Z.G., Denagamage, S., and Zheng, S.Y., ACS Appl. Mater. Interfaces, 2016, vol. 8, no. 16, pp. 10234–10242. https://doi.org/10.1021/acsami.6b02209

    Article  CAS  PubMed  Google Scholar 

  75. Szczęśniak, B., Choma, J., and Jaroniec, M., J. Colloid Interface Sci., 2018, vol. 514, pp. 801–813. https://doi.org/10.1016/j.jcis.2017.11.049

    Article  CAS  PubMed  Google Scholar 

  76. Zhou, H., Zhang, J., Ji, D., Yuan, A., and Shen, X., Micropor. Mesopor. Mater., 2016, vol. 229, pp. 68–75. https://doi.org/10.1016/j.micromeso.2016.04.007

    Article  CAS  Google Scholar 

  77. Wang, Q., Yang, Y., Gao, F., Ni, J., Zhang, Y., and Lin, Z., ACS Appl. Mater. Interfaces, 2016, vol. 8, no. 47, pp. 32477–32487. https://doi.org/10.1021/acsami.6b11965

    Article  CAS  PubMed  Google Scholar 

  78. Huang, K. and Xu, Y., Environ. Technol., 2021, vol. 42, no. 5, pp. 694–704. https://doi.org/10.1080/09593330.2019.1643410

    Article  CAS  PubMed  Google Scholar 

  79. Mu, L., Cao, D., Zhuang, W., Yu, Q., Cai, M., and Shi, Y., Adv. Mater. Interfaces, 2020, vol. 7, no. 9, ID 1902194. https://doi.org/10.1002/admi.201902194

    Article  CAS  Google Scholar 

  80. Fleker, O., Borenstein, A., Lavi, R., Benisvy, L., Ruthstein, S., and Aurbach, D., Langmuir, 2016, vol. 32, no. 19, pp. 4935–4944. https://doi.org/10.1021/acs.langmuir.6b00528

    Article  CAS  PubMed  Google Scholar 

  81. Xu, X., Shi, W., Li, P., Ye, S., Ye, C., Ye, H., Lu, T., Zheng, A., Zhu, J., Xu, L., Zhong, M., and Cao, X., Chem. Mater., 2017, vol. 29, no. 14, pp. 6058–6065. https://doi.org/10.1021/acs.chemmater.7b0194

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

I.E. Uflyand: collection and analysis of results of studying the synthesis of nanocomposites by in situ and post-synthesis methods; V.N. Naumkina: summary of published data on alternative methods for preparing nanocomposites; V.A. Zhinzhilo: collection and analysis of results of studying the structure and properties of nanocomposites.

Corresponding author

Correspondence to I. E. Uflyand.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 11, pp. 1226–1264, December, 2021 https://doi.org/10.31857/S0044461821100029

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uflyand, I.E., Naumkina, V.N. & Zhinzhilo, V.A. Nanocomposites of Graphene Oxide and Metal-Organic Frameworks. Russ J Appl Chem 94, 1453–1468 (2021). https://doi.org/10.1134/S107042722111001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042722111001X

Keywords:

Navigation