Skip to main content
Log in

Effect of Synthesis Parameters on the Structural, Optical and Electrical Properties of Successive Ionic Layer Adsorption and Reaction (SILAR)-Deposited CuO Thin Films

  • Specific Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 01 October 2021

This article has been updated

Abstract

In this work, CuO thin films were deposited by successive ionic layer adsorption and reaction (SILAR) method at room temperature. The synthesis parameters of the method were changed to examine the details of the production method. Our main goal was the optimization of the deposited CuO thin films in terms of their structural, optical and electrical properties depending on the pH (11, 11.2, and 11.4) and temperature (70, 80, and 90°C) of hot water in the production cycle. XRD analysis showed that crystallite size increases with the increase in temperature of hot water in the production cycle. The crystallite size has also changed according to pH, but no linear increase or decrease was observed. SEM analysis showed that the change of structural parameters has considerably affected the morphology of the produced films. Optical bandgaps of the synthesized CuO thin films decreased with the increase in pH value and/or temperature of hot water in the production cycle and this behavior could be best attributed to the grain size enhancement. Moreover, all films showed a decrease in resistance with the increase in temperature of the hot water in the production cycle. On the other hand, the lowest resistances were achieved for CuO thin films produced at a pH of 11.2, beyond which resistances increased with the further increase in pH value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Change history

REFERENCES

  1. Morales, J., Sanchez, L., Martin, F., Romos-Barrado, J.R., and Sanchez, M., Electrochim. Acta , 2004, vol. 49, no. 26, pp. 4589–4597 https://doi.org/10.1016/j.electacta.2004.05.012

    Article  CAS  Google Scholar 

  2. Zheng, L. and Liu, X., Mater. Lett., 2007, vol. 61, no. 11–12, pp. 2222–2226. https://doi.org/10.1016/j.matlet.2006.08.063

    Article  CAS  Google Scholar 

  3. Gençyılmaz, O. and Taşkoprü, T., J. Alloys Compd., 2017, vol. 695, pp. 1205–1212, https://doi.org/10.1016/j.jallcom.2016.10.247

    Article  CAS  Google Scholar 

  4. Akaltun, Y., Thin Solid Films, 2015, vol. 594, part A, pp. 30–34 https://doi.org/10.1016/j.tsf.2015.10.003

    Article  CAS  Google Scholar 

  5. Lillo-Ramiro, J., Guerrero-Villalba, J.M., de L. Mota-Gonzalez, M., Aguirre- Tostado, F.S., Gutierrez-Heredia, G., Mejía-Silva, I., and Carrillo-Castillo, A., Optik, 2021, vol. 229, no. 166238, pp. 1–13 https://doi.org/10.1016/j.ijleo.2020.166238

    Article  CAS  Google Scholar 

  6. Yang, B., Liu, J., Qin, H., Liu, Q., Jing, X., Zhang, H., Li, R., Huang, G., and Wang, J., Ceram. Intern. 2018, vol. 44, no. 9, pp. 10426–10432 https://doi.org/10.1016/j.ceramint.2018.03.059

    Article  CAS  Google Scholar 

  7. Sun, Q., Shi, X., Wang, X., Zhai, Y., Gao, L., Li, Z., Hao, Y., and Wu, Y., Org. Electron., 2019, vol. 75, ID 105428, pp. 1–7. https://doi.org/10.1016/j.orgel.2019.105428

    Article  CAS  Google Scholar 

  8. Yang, Y., Yang, J., Yin, W., Huang, F., Cui, A., Zhang, D., Li, W., Hu, Z., and Chu, J., Appl. Surf. Sci., 2019, vol. 481, pp. 632–636. https://doi.org/10.1016/j.apsusc.2019.03.130

    Article  CAS  Google Scholar 

  9. Shinde, S.K., Yadav, H.M., Ghodake, G.S., Kadam, A.A., Kumbhar, V.S., Yang, J., Hwang, K., Jagadale, A.D., Kumar, S., and Kim, D.Y., Colloids Surf B Biointerfaces, 2019, vol. 181, pp. 1004–1011. https://doi.org/10.1016/j.colsurfb.2019.05.079

    Article  CAS  PubMed  Google Scholar 

  10. Chen, Y, Yan, D., Jin, X., Zeng, Y., Zhang, D., Liu, Z., He, W., Wang, S., Wang, Z., Liu, Y., Zhang, W., and Huang, Y., Appl. Surf. Sci., 2019, vol. 491, pp. 206–215. https://doi.org/10.1016/j.apsusc.2019.06.117

    Article  CAS  Google Scholar 

  11. Mersian, H. and Alizadeh, M., Ceram. Intern., 2020, vol. 46, pp. 17197–17208. https://doi.org/10.1016/j.ceramint.2020.03.275

    Article  CAS  Google Scholar 

  12. Shinde, S.K., Ghodake, G.S., Fulari, V.J., and Kim, D.-Y., J Ind Eng Chem 2017, vol. 52, pp. 12–17. https://doi.org/10.1016/j.jiec.2017.03.049

    Article  CAS  Google Scholar 

  13. Zgair, I.A., Omran Alkhayatt, A.H., Muhmood, A.A., and Hussain, S. K., Optik , 2019, vol. 191, pp. 48–54 . https://doi.org/10.1016/j.ijleo.2019.06.008

    Article  CAS  Google Scholar 

  14. Karaduman Er, I., Yıldırım, M.A., Örkçü, H.H., Ateş, A., and Acar, S.,Appl. Phys. A, 2021, vol. 127, ID 230, pp. 1–14. https://doi.org/10.1007/s00339-021-04354-7

    Article  CAS  Google Scholar 

  15. Sales Amalraj, A. and Senguttuvan, G., J Mater Sci: Mater Electron , 2014, vol. 25, pp. 2035–2040. https://doi.org/10.1007/s10854-014-1825-2

    Article  CAS  Google Scholar 

  16. Bayansal, F., Sahin, B., Yuksel, M., and Cetinkara, H.A., Mater. Lett., 2013, vol. 98, pp. 197–200. https://doi.org/10.1016/j.matlet.2013.02.030

    Article  CAS  Google Scholar 

  17. Bayansal, F., Sahin , B., Yüksel, M., Biyikli, N., Çetinkara, H.A., and Güder, H.S., J. Alloys Compd., 2013, vol. 566, pp. 78–82. https://doi.org/10.1016/j.jallcom.2013.03.018

    Article  CAS  Google Scholar 

  18. Ghos, B.C., Uddin Farhad, S.F., Majed Patwary Md, A., Majumder, S., Hossain, Md.A., Islam Tanvir, N., Rahman, M.A., Tanaka, T., and Guo, Q., ACS Omega , 2021, vol. 6, pp. 2665–2674. https://doi.org/10.1021/acsomega.0c04837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sahin, B. and Kaya, T., Appl. Surf. Sci., 2016, vol. 362, pp. 532–537. https://doi.org/10.1016/j.apsusc.2015.11.136

    Article  CAS  Google Scholar 

  20. Çayır Taşdemirci, T., Elect. Mater. Lett., 2020, vol. 16, pp. 239–246. https://doi.org/10.1007/s13391-020-00205-4

    Article  CAS  Google Scholar 

  21. Aydin, R and Cavusoglu, H, Mater. Res. Express, 2019, vol. 6, no. 086403, pp. 1–31. https://doi.org/10.1088/2053-1591/ab1a08

    Article  CAS  Google Scholar 

  22. Yuksel, M., Pennings, J.R., Bayansal, F., and Yeow, J.T.W., Phys. Rev. B Condens. Matter 2020, vol. 599, no. 412578, pp. 1–5. https://doi.org/10.1016/j.physb.2020.412578

    Article  CAS  Google Scholar 

  23. Mageshwari, K. and Sathyamoorthy, R., Mater. Sci. Semicond. Process., 2013, vol. 16, pp. 337–343. https://doi.org/10.1016/j.mssp.2012.09.016

    Article  CAS  Google Scholar 

  24. Daoudi, O., Qachaou, Y., Raidou, A., Nouneh, K., Lharch, M., and Fahoume, M., Superlattices Microstruct. 2019, vol. 127, pp. 93–99. https://doi.org/10.1016/j.spmi.2018.03.006

    Article  CAS  Google Scholar 

  25. .Ravi Dhas, C., Alexander, D., Jennifer Christy, A., Jeyadheepan, K., Moses Ezhil Raj, A., and Sanjeevi Raja, C., Asian J. Appl. Sci., 2014, vol. 7, no. 8, pp. 671-684. https://doi.org/10.3923/ajaps.2014.671.684

    Article  CAS  Google Scholar 

  26. Cavusoglu, H., J. Mater. Sci.: Mater. Electron, 2018, vol. 29, pp. 12777–12784. https://doi.org/10.1007/s10854-018-9396-2

    Article  CAS  Google Scholar 

  27. Bade, B.R., Rondiya, S.R., Hase, Y.V., Nasane, M.P., Jathar, S.B., Barma, S.V., Kore, K.B., Nilegave, D.S., Jadkar, S.R., and Funde, A.M., AIP Conference Proceedings, 2021, vol. 2335, no. 100001, pp. 1–6. https://doi.org/10.1063/5.0043341

  28. Sathya, M. and Pushpanathan, K., Appl. Surf. Sci., 2018, vol. 449, pp. 346–357 https://doi.org/10.1016/j.apsusc.2017.11.127

    Article  CAS  Google Scholar 

  29. Mariappan, R., Ponnuswamy, V., Chandra Bose, A., Chithambararaj, A., Suresh, R., and Ragavendar, M., Superlattices Microstruct. 2014, vol. 65, pp. 184–94. https://doi.org/10.1016/j.spmi.2013.10.005

    Article  CAS  Google Scholar 

  30. Srinivasan, G., Rajendra Kumar, R.T., and Kumar, J., J. Sol-Gel. Sci. Technol., 2007, vol. 43, pp. 171–177. https://doi.org/10.1007/s10971-007-1574-2

    Article  CAS  Google Scholar 

  31. Visalakshi, S., Kannan, R., Valanarasu, S., Kathalingam, A., and Rajashabala, S., Materials Research Innovations, 2016, vol. 21, no. 3, pp. 146–151.

    Article  Google Scholar 

  32. Saadat Niavol, S. and Ghodsi, F.E., Russ. J. Phys. Chem., 2013, vol. 87, no. 1, pp. 84–87. https://doi.org/10.1134/S0036024413010214

    Article  CAS  Google Scholar 

  33. Maiti, U.N., Ghosh, P.K., Amed, Sk,F., Mitra, M.K., and Chattopadhyay, K.K., J. Sol-Gel Sci Techn.,v2007, vol. 41, pp. 87–92. https://doi.org/10.1007/s10971-006-0116-7

    Article  CAS  Google Scholar 

  34. Cortes, A., Gómez, H., Marotti, R.E., Riverosa, G., and Dalchiele, E.A., Solar Energy Materials and Solar Cells, 2004, vol. 82, no. 1–2, pp. 21–34. https://doi.org/10.1016/j.solmat.2004.01.002

    Article  CAS  Google Scholar 

  35. Luo, L.-B., Wang, X.-H., Xie, C., Li, Z.-J., Lu, R., Yang, X.-B., and Lu, J., Nanoscale Res. Lett. 2014, vol. 9, no. 637, pp. 1–8. http://www.nanoscalereslett.com/content/9/1/637.

    Article  Google Scholar 

  36. Uddin, J., Sharmin, M., Hasan, M.N., and Podder, J., Optical Materials, 2021, vol. 119, no. 111388, pp. 1–9. https://doi.org/10.1016/j.optmat.2021.111388

    Article  CAS  Google Scholar 

  37. Zare Asl, H. and Mohammad Rozati, S., Materials Research, 2018, vol. 21, no. 2, e20170754, pp. 1–8. https://doi.org/10.1590/1980-5373-MR-2017-0754

    Article  Google Scholar 

  38. Gençyılmaz, O. and Taşköprü ,T., Dokuz Eylul University-Faculty of Engineering Journal of Science and Engineering, 2017, vol. 19, no. 56, pp. 468–483. https://doi.org/10.21205/deufmd.2017195646

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irmak Karaduma Er.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Er, I.K. Effect of Synthesis Parameters on the Structural, Optical and Electrical Properties of Successive Ionic Layer Adsorption and Reaction (SILAR)-Deposited CuO Thin Films. Russ J Appl Chem 94, 1334–1343 (2021). https://doi.org/10.1134/S1070427221090160

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221090160

Keywords:

Navigation