Skip to main content
Log in

Study on Optimal Conditions of Oxidative Desulfurization over Hierarchical CoAPO-5 Catalysts Using Response Surface Method

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The present study focuses on the improvement of desulfurization rate in the oxidative desulfurization using hierarchical CoAPO-5 molecular sieve as a catalyst by response surface method. Firstly, the catalytic properties of microporous and hierarchical CoAPO-5 were compared, and hierarchical CoAPO-5 with better catalytic performance was selected for further investigation. Then, the reaction conditions were further optimized by response surface method. In the response surface method, five factors including reaction temperature, reaction time, catalyst dosage, extractant dosage and oxidant dosage affecting desulfurization rate were screened and the conditions for oxidative desulfurization were optimizing by applying Box–Behnken design. The fitting second-order polynomial equation, which was based on experimental results, was employed to predict desulfurization rate and verified by model diagnostic plots. According to the T and P values in the analysis of variance, it is found that the fitting model is significant, and the interaction between reaction temperature, reaction time, and extractant dosage is significant. The optimal conditions for oxidative desulfurization were found through three-dimensional surface and two-contour graph. In this case, the desulfurization rate reached 79.8%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Zhang, B., Jiang, Z., Li, J., Zhang, Y., Lin, F., Liu, Y., and Li, C., J. Catal., 2012287, pp. 5–12. https://doi.org/10.1016/j.jcat.2011.11.003

    Article  CAS  Google Scholar 

  2. Subhan, S., Rahman, A., Yaseen, M., Rashid, H., Ishaq, M., Sahibzada, M., and Tong, Z., Fuel, 2019, vol. 237, pp. 793–805.

    Article  CAS  Google Scholar 

  3. Sengupta, A., Kamble, P.D., Basu, J.K., and Sengupta, S., Ind. Eng. Chem. Res., 2011, vol. 51, pp. 147–157.

    Article  Google Scholar 

  4. Hulea, V., Fajula, F., and Bousquet, J., J. Catal., 2001, vol. 198, pp. 179–186.

    Article  CAS  Google Scholar 

  5. Zhang, P., Kang, L., Zhu, M., and Dai, B., Sustain. Energy Fuels, 2020, vol. 4, pp. 4293–4300.

    Article  CAS  Google Scholar 

  6. Peeters, M.P.J., Busio, M., Leijten, P., and Eindhoven, J.H., Appl. Catal., A, 1994, vol. 118, pp. 51–62.

    Article  CAS  Google Scholar 

  7. Moradi, M., Daryan, J.T., and Mohamadalizadeh, A., Fuel Process Technol., 2013, vol. 109, pp. 163–171.

    Article  CAS  Google Scholar 

  8. Danmaliki, G.I., Saleh, T.A., and Shamsuddeen, A.A., Chem. Eng., J., 2017, vol. 313, pp. 993–1003.

    Article  CAS  Google Scholar 

  9. Mokhtar, W.N., Bakar, W.A., Ali, R, and Kadir, A., J. Ind. Eng. Chem., 2015, vol. 30, pp. 274–280.

    Article  CAS  Google Scholar 

  10. Zahra, E., Peyman, D., and Giti, E., J. Mater. Sci. Eng., B, 2014, vol. 4, pp. 322–330.

    Google Scholar 

  11. Treacy, M. and Higgins, J., Appl. Catal., A, 1986, vol. 21, pp. 388–389.

    Google Scholar 

  12. Yang, H., Liu, Z., Gao, H., and Xie, Z., Appl. Catal., A, 2010, vol. 379, pp. 166–171.

    Article  CAS  Google Scholar 

  13. Qi, J., Jin, Q., Zhao, K., and Zhao, T., J. Porous. Mater., 2015, vol. 22, pp. 1021–1032.

    Article  CAS  Google Scholar 

  14. Liu, S., Ren, J., Zhang, H., Lv, E., Yang, Y., and Li, Y., J. Catal., 2016, vol. 335, pp. 11–23. https://doi.org/10.1016/j.jcat.2015.12.009

    Article  CAS  Google Scholar 

  15. Ng, E., Awala, H., Komaty, S., and Mintova, S., Micropor. Mesopor. Mater., 2019, vol. 280, pp. 256–263.

    Article  CAS  Google Scholar 

  16. Liu, F., Wang, X., Xu, F., Lin, Q., Pan, H., Wu, H., and Cao, J., Micropor. Mesopor. Mater., 2017, vol. 252, pp. 197–206.

    Article  CAS  Google Scholar 

  17. Fu, W., Zhang, L., Wu, D., Xiang, M., Zhuo, Q., Huang, K., Tao, Z., and Tang, T., J. Catal., 2015, vol. 330, pp. 423–433.

    Article  CAS  Google Scholar 

  18. Li, H., Wang, Y., Fan, C., Sun, C., Wang, X., Wang, C., Zhang, X., and Wang, S., Appl. Catal., A, 2018, vol. 551, pp. 34–48.

    Article  CAS  Google Scholar 

  19. Chen, H., Wang, Q., Zhang, X., and Wang, L., Ind. Eng. Chem. Res., 2014, vol. 53, pp. 19916–19924.

    Article  CAS  Google Scholar 

  20. Zhang, P., Liu, H., Yue, Y., Zhu, H., and Bao, X., Fuel Process Technol., 2018, vol. 179, pp. 72–85.

    Article  CAS  Google Scholar 

  21. Danilina, N., Krumeich, F., and Bokhoven, J., J. Catal., 2010, vol. 272, pp. 37–43. https://doi.org/10.1016/j.jcat.2010.03.014

    Article  CAS  Google Scholar 

  22. Du, Q., Guo, Y., Duan, H., Chen, Y., and Liu, H., Fuel, 2017, vol. 188, pp. 232-238.

    Article  CAS  Google Scholar 

  23. Zafar, S.B., Asif, T., Qader, S., and Aman, A., Int. J. Biol. Macromol., 2018, vol. 115, pp. 776–785.

    Article  CAS  Google Scholar 

  24. Rezaei, R., Moradi, G., and Sharifnia, S., Energy Fuels, 2019, vol. 33, pp. 6689–6706.

    Article  CAS  Google Scholar 

  25. Mei, X., Liu, R., Shen, F., and Wu, H., Energy Fuels, 2009, vol. 23, pp. 487–491.

    Article  CAS  Google Scholar 

  26. Eskandari, P., Farhadian, M., Solaimany, N., and Jeon, B., Ind. Eng. Chem. Res., 2019, vol. 58, pp. 2099–2112.

    Article  CAS  Google Scholar 

  27. Gao, Y., Liu, Z., Hu, G., Gao, R., and Zhao, J., Micropor. Mesopor. Mater., 2020, vol. 291, pp. 109702–109714.

    Article  CAS  Google Scholar 

  28. Mokhtar, W., Bakar, W., Ali, R., and Kadir, A., Fuel, 2015, vol. 161, pp. 26–33.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foundation of China (21706017), a Project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Shao.

Ethics declarations

The authors declare that they have no conflicts of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Zhao, X., Sun, X. et al. Study on Optimal Conditions of Oxidative Desulfurization over Hierarchical CoAPO-5 Catalysts Using Response Surface Method. Russ J Appl Chem 94, 1313–1323 (2021). https://doi.org/10.1134/S1070427221090147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221090147

Keywords:

Navigation