Skip to main content
Log in

Comparison of Physicochemical Properties and Catalytic Activity in the m-Xylene Isomerization of Catalysts Based on ZSM-12 Zeolites Prepared at Hydrothermal Conditions and under the Action of Microwave Radiation

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The properties of ZSM-12 zeolites prepared under hydrothermal conditions and microwave radiation influence were studied. The prepared zeolites are characterized by a wide range of physicochemical methods of analysis: X-ray diffraction analysis, low-temperature nitrogen adsorption/desorption, scanning electron microscopy, solid-state 27Al and 29Si NMR spectroscopy, infrared spectroscopy, temperature-programmed desorption of ammonia, infrared spectroscopy of adsorbed pyridine, and X-ray fluorescence elemental analysis. The calcined zeolites were impregnated with 0.5 wt % Pt, which performs the hydrogenation function in the reaction under study. The obtained materials were studied in the m-xylene isomerization reaction under the following conditions: Т = 300–440°С, WHSV = 1 h–1, Р2) = 10 atm. It was found that, on the ZSM-12 MW catalyst, owing to its high acidity and fine particles, which promote high mass transfer, it is possible to increase the yields of m-xylene isomers, in particular p-xylene, to 36–65%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Kuznetsov, P.S., Dementiev, K.I., Palankoev, T.A., Kalmykova, D.S., Malyavin, V.V., Sagaradze, A.D., and Maximov, A.L., Petrol. Chem., 2021, vol. 61, no. 6, pp. 649–662. https://doi.org/10.1134/s0965544121050182 

    Article  CAS  Google Scholar 

  2. Tsaplin, D.E., Naranov, E.R., Kulikov, L.A., Levin, I.S., Egazar’yants, S.V., Maximov, A.L., and Karakhanov, E.A., Petrol. Chem., 2021, vol. 61, pp. 815–824. https://doi.org/10.1134/s0965544121080089 

    Article  CAS  Google Scholar 

  3. Vorobkalo, V.A., Popov, A.G., Rodionova, L.I., Knyazeva, E.E., and Ivanova, I.I., Petrol. Chem., 2018, vol. 58, no. 12, pp. 1036–1044. https://doi.org/10.1134/s0965544118120137 

    Article  CAS  Google Scholar 

  4. Popov, A.G., Efimov, A.V., and Ivanova, I.I., Petrol. Chem., 2019, vol. 59, no. 7, pp. 691–694. https://doi.org/10.1134/S0965544119070168 

    Article  CAS  Google Scholar 

  5. Chen, D., Hu, X., Shi, L., Cui, Q., Wang, H., and Yao, H., Appl. Clay Sci., 2012, vol. 59–60, pp. 148–151. https://doi.org/10.1016/j.clay.2012.02.017

    Article  CAS  Google Scholar 

  6. Onishchenko, M.I., Kulikov, A.B., and Maksimov, A.L., Petrol. Chem., 2017, vol. 57. N 14, pp. 1287–1294. https://doi.org/10.1134/S0965544117140079 

    Article  CAS  Google Scholar 

  7. Mingos, D.M.P., Advanced Mater., 1993, vol. 5, no. 11, pp. 857–859. https://doi.org/10.1002/adma.19930051115

    Article  CAS  Google Scholar 

  8. Tsaplin, D.E., Makeeva, D.A., Kulikov, L.A., Maximov, A.L., and Karakhanov, E.A., Russ. J. Appl. Chem., 2018, vol. 91. N 12, pp. 1957–1962. https://doi.org/10.1134/S1070427218120066 

    Article  CAS  Google Scholar 

  9. Wang, Z., Sun, Q., Wang, D., Hong, Z., Qu, Z., and Li, X., Separation Purification Technol., 2019, vol. 209, pp. 1016–1026. https://doi.org/10.1016/j.seppur.2018.09.045

    Article  CAS  Google Scholar 

  10. Košová, G. and Čejka, J., Collection Czech. Chem. Commun., 2002, vol. 67, no. 12, pp. 1760–1778. https://doi.org/10.1135/cccc20021760

    Article  CAS  Google Scholar 

  11. Zhu, H.-B., Xia, Q.-H., Guo, X.-T., Su, K.-X., Hu, D., Ma, X., Zeng, D., and Deng, F., Mater. Lett., 2006, vol. 60, no. 17–18, pp. 2161–2166. https://doi.org/10.1016/j.matlet.2005.12.091

    Article  CAS  Google Scholar 

  12. Wu, W., Wu, W., Kikhtyanin, O.V., Li, L., Toktarev, A.V., Ayupov, A.B., Khabibulin, J.F., Echevsky, G.V., and Huang, J., Appl. Catal. A: General, 2010, vol. 375, no. 2, pp. 279–288. https://doi.org/10.1016/j.apcata.2010.01.003

    Article  CAS  Google Scholar 

  13. Parsafard, N., Peyrovi, M.H., and Rashidzadeh, M.N., Micropor. Mesopor. Mater., 2014, vol. 200, pp. 190–198. https://doi.org/10.1016/j.micromeso.2014.08.044

    Article  CAS  Google Scholar 

  14. Sanhoob, M.A., Muraza, O., Yoshioka, M., Qamaruddin, M., and Yokop, T., J. Analyt. Appl. Pyrol., 2018, vol. 129, pp. 231–240. https://doi.org/10.1016/j.jaap.2017.11.007

    Article  CAS  Google Scholar 

  15. Shavaleev, D.A., Pavlov, M.L., Dasimova, R.A., Sadovnikov, A.A., Sudin, V.V., Smirnova, E.M., Demikhova, N.R., Grigor’ev, Yu.V., and Maximov, A.L., Petrol. Chem., 2020, vol. 60, no. 9, pp. 1073–1079. https://doi.org/10.1134/S0965544120090182 

    Article  CAS  Google Scholar 

  16. Corma, A. and Sastre, E., J. Catal., 1991, vol. 129, no. 1, pp. 177–185. https://doi.org/10.1016/0021-9517(91)90021-U

    Article  CAS  Google Scholar 

  17. Tsai, T.-C. and Wang, I., J. Catal., 1992, vol. 133, no. 1, pp. 136–145. https://doi.org/10.1016/0021-9517(92)90191-J

    Article  CAS  Google Scholar 

  18. Glotov, A.P., Roldugina, E.A., Artemova, M.I., Smirnova, E.M., Demikhova, N.R., Stytsenko, V.D., Egazar’yants, S.V., Maximov, A.L., and Vinokurov, V.A., Russ. J. Appl. Chem., 2018, vol. 91, no. 8, pp. 1353–1362. https://doi.org/10.1134/s1070427218080141

    Article  CAS  Google Scholar 

  19. Liu, Y., Zhou, X., Pang, X., Jin, Y., Meng, X., Zheng, X., Gao, X., and Xiao F.-Sh., ChemCatChem., 2013, vol. 5, no. 6, pp. 1517–1523. https://doi.org/10.1002/cctc.201200691

    Article  CAS  Google Scholar 

  20. Glotov, A.P., Artemova, M.I., Demikhova, N.R., Smirnova, E.M., Ivanov, E.V., Gushchin, P.A., Egazar’yants, S.V., and Vinokurov, V.A., Petrol. Chem., 2019, vol. 59, no. 11, pp. 1226–1234. https://doi.org/10.1134/S0965544119110033 

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was carried out using the equipment of the Center for Collective Use “Analytical Center for the Problems of Deep Refining of Oil and Petrochemistry” of the Institute of Petroleum Engineering, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

D.E. Tsaplin: synthesis of zeolites and catalysts based on them; V.A. Ostroumova: generalization of the results; L.A. Kulikov: catalytic experiments; E.R. Naranov: physicochemical analyzes by the methods of low-temperature adsorption–desorption of nitrogen, solid-state nuclear magnetic resonance spectroscopy on 27Al and 29Si nuclei; S.V. Egazar’yants: physicochemical analyzes by means of thermoprogrammed desorption of ammonia, infrared spectroscopy of adsorbed pyridine, and X-ray fluorescence spectroscopy; E.A. Karakhanov: formulation of the goals and objectives of the study for designing the synthesis of zeolite in microwave conditions and the selection of experimental conditions.

Corresponding authors

Correspondence to D. E. Tsaplin or V. A. Ostroumova.

Ethics declarations

The authors declare that they have no conflicts of interest requiring disclosure in this article.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 9, pp. 1204–1213, January, 2021 https://doi.org/10.31857/S0044461821090103

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsaplin, D.E., Ostroumova, V.A., Kulikov, L.A. et al. Comparison of Physicochemical Properties and Catalytic Activity in the m-Xylene Isomerization of Catalysts Based on ZSM-12 Zeolites Prepared at Hydrothermal Conditions and under the Action of Microwave Radiation. Russ J Appl Chem 94, 1292–1301 (2021). https://doi.org/10.1134/S1070427221090123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221090123

Keywords:

Navigation