Skip to main content
Log in

Effect of Steam–Air Treatment of Alumina–Chromia Dehydrogenation Catalysts on Their Physicochemical and Catalytic Characteristics

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The effect that calcination of an alumina–chromia catalyst containing 13 wt % Cr with additions of Na+ and Zr4+ in an air–water vapor atmosphere (from 0 to 80 vol % water vapor) at 750°С and a pressure of 1 bar exerts on the physicochemical properties of the catalyst and its activity in n-butane dehydrogenation was studied. The steam treatment leads to a slight decrease in the specific surface area (by up to 10%), partial decomposition of Cr(VI) compounds (up to 60%), and Cr2O3 crystallization. The catalytic activity decreases with an increase in the water vapor : air ratio. Low water vapor concentration (10 vol %) favors a significant decrease in the amount of the coke formed (by 60%) without significantly affecting the yield of alkenes. Thus, introduction of water vapor into the calcination atmosphere allows control of the Cr(VI) amount and catalyst selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Sattler, J.J.H.B., Ruiz-Martinez, J., Santillan-Jimenez, E., and Weckhuysen, B.M., Chem. Rev., 2014, vol. 114, no. 20, pp. 10613–10653. https://doi.org/10.1021/cr5002436

    Article  CAS  PubMed  Google Scholar 

  2. Sanfilippo, D., Catal. Today, 2011, vol. 178, no. 1, pp. 142–150. https://doi.org/10.1016/j.cattod.2011.07.013

    Article  CAS  Google Scholar 

  3. Busca, G., Adv. Catal., 2014, vol. 57, pp. 319–404. https://doi.org/10.1016/B978-0-12-800127-1.00003-5

    Article  CAS  Google Scholar 

  4. Nazimov, D.A., Klimov, O.V., Danilova, I.G., Trukhan, S.N., Saiko, A.V., Cherepanova, S.V., Chesalov, Y.A., Martyanov, O.N., and Noskov, A.S., J. Catal., 2020, vol. 391, pp. 35–47. https://doi.org/10.1016/j.jcat.2020.08.006

    Article  CAS  Google Scholar 

  5. Gorriz, O.F., Cortes Corberan, V., and Fierro, J.L.G., Ind. Eng. Chem. Res., 1992, vol. 31, no. 12, pp. 2670–2674. https://doi.org/10.1021/ie00012a007

    Article  CAS  Google Scholar 

  6. Rodemerck, U., Kondratenko, E.V., Otroshchenko, T., and Linke, D., Chem. Commun., 2016, vol. 52, no. 82, pp. 12222–12225. https://doi.org/10.1039/C6CC06442F

    Article  CAS  Google Scholar 

  7. Rombi, E., Cutrufello, M.G., Solinas, V., Rossi, S. De, Ferraris, G., and Pistone, A., Appl. Catal. A, 2003, vol. 251, no. 2, pp. 255–266. https://doi.org/10.1016/S0926-860X(03)00308-9

    Article  CAS  Google Scholar 

  8. Cavani, F., Koutyrev, M., Trifirò, F., Bartolini, A., Ghisletti, D., Iezzi, R., Santucci, A., and Del Piero, G., J. Catal., 1996, vol. 158, no. 1, pp. 236–250. https://doi.org/10.1006/jcat.1996.0023

    Article  CAS  Google Scholar 

  9. Nazimov, D.A., Klimov, O.V., Saiko, A.V., Trukhan, S.N., Glazneva, T.S., Prosvirin, I.P., Cherepanova, S.V., and Noskov, A.S., Catal. Today, 2021, vol. 375, pp. 401–409. https://doi.org/10.1016/j.cattod.2020.03.005

    Article  CAS  Google Scholar 

  10. Bocanegra, S.A., Castro, A.A., Guerrero-Ruíz, A., Scelza, O.A., and De Miguel, S.R., Chem. Eng. J., 2006, vol. 118, no. 3, pp. 161–166. https://doi.org/10.1016/j.cej.2006.02.004

    Article  CAS  Google Scholar 

  11. Wang, G., Song, N., Lu, K., Wang, W., Bing, L., Zhang, Q., Fu, H., Wang, F., and Han, D., Catalysts, 2019, vol. 9, no. 11, p. 968. https://doi.org/10.3390/catal9110968

    Article  CAS  Google Scholar 

  12. Masson, J., Bonnier, J.M., Duvigneaud, P.H., and Delmon, B., J. Chem. Soc., Faraday Trans. 1, 1977, vol. 73, pp. 1471–1479. https://doi.org/10.1039/F19777301471

    Article  CAS  Google Scholar 

  13. Rombi, E., Gazzoli, D., Cutrufello, M.G., De Rossi, S., and Ferino, I., Appl. Surf. Sci., 2010, vol. 256, no. 17, pp. 5576–5580. https://doi.org/10.1016/j.apsusc.2009.12.151

    Article  CAS  Google Scholar 

  14. Patent US 2399678A, Publ. 1946.

  15. Patent US 2419997A, Publ. 1947.

  16. Jóźwiak, W.K. and Dalla Lana, I.G., J. Chem. Soc., Faraday Trans., 1997, vol. 93, no. 15, pp. 2583–2589. https://doi.org/10.1039/a608563f

    Article  Google Scholar 

  17. McDaniel, M.P., J. Catal., 1982, vol. 76, no. 1, pp. 37–47. https://doi.org/10.1016/0021-9517(82)90234-2

    Article  CAS  Google Scholar 

  18. Bartholomew, C.H., Appl. Catal. A, 2001, vol. 212, nos. 1–2, pp. 17–60. https://doi.org/10.1016/S0926-860X(00)00843-7

    Article  CAS  Google Scholar 

  19. Anderson, P.J. and Morgan, P.L., Trans. Faraday Soc., 1964, vol. 60, pp. 930–937. https://doi.org/10.1039/TF9646000930

    Article  CAS  Google Scholar 

  20. Arai, H. and Machida, M., Appl. Catal. A, 1996, vol. 138, no. 2, pp. 161–176. https://doi.org/10.1016/0926-860X(95)00294-4

    Article  CAS  Google Scholar 

  21. Fridman, V.Z., Xing, R., and Severance, M., Appl. Catal. A, 2016, vol. 523, pp. 39–53. https://doi.org/10.1016/j.apcata.2016.05.008

    Article  CAS  Google Scholar 

  22. Patent US 8680357B1, Publ. 2014.

  23. Airaksinen, S.M.K., Krause, A.O.I., Sainio, J., Lahtinen, J., Chao, K.J., Guerrero-Pérez, M.O., and Bañares, M.A., Phys. Chem. Chem. Phys., 2003, vol. 5, no. 20, pp. 4371–4377. https://doi.org/10.1039/B305802F

    Article  CAS  Google Scholar 

  24. Weckhuysen, B.M., Schoonheydt, R.A., Jehng, J.-M., Wachs, I.E., Cho, S.J., Ryoo, R., Kijlstra, S., and Poels, E., J. Chem. Soc., Faraday Trans., 1995, vol. 91, no. 18, pp. 3245–3253. https://doi.org/10.1039/FT9959103245

    Article  CAS  Google Scholar 

  25. Kanervo, J.M. and Krause, A.O.I., J. Catal., 2002, vol. 207, no. 1, pp. 57–65. https://doi.org/10.1006/jcat.2002.3531

    Article  CAS  Google Scholar 

  26. Weckhuysen, B.M., Ridder, L.M. De, and Schoonheydt, R.A., J. Phys. Chem., 1993, vol. 97, no. 18, pp. 4756–4763. https://doi.org/10.1021/j100120a030

    Article  CAS  Google Scholar 

  27. Egorova, S.R., Bekmukhamedov, G.E., and Lamberov, A.A., Kinet. Catal., 2013, vol. 54, no. 1, pp. 49–58. https://doi.org/10.1134/S0023158413010072 

    Article  CAS  Google Scholar 

  28. Weckhuysen, B.M. and Schoonheydt, R.A., Catal. Today, 1999, vol. 51, no. 2, pp. 223–232. https://doi.org/10.1016/S0920-5861(99)00047-4

    Article  CAS  Google Scholar 

  29. Puurunen, R.L. and Weckhuysen, B.M., J. Catal., 2002, vol. 210, no. 2, pp. 418–430. https://doi.org/10.1006/jcat.2002.3686

    Article  CAS  Google Scholar 

  30. Fridman, V.Z. and Xing, R., Appl. Catal. A, 2017, vol. 530, pp. 154–165. https://doi.org/10.1016/j.apcata.2016.11.024

    Article  CAS  Google Scholar 

  31. Fridman, V.Z. and Xing, R., Ind. Eng. Chem. Res., 2017, vol. 56, no. 28, pp. 7937–7947. https://doi.org/10.1021/acs.iecr.7b01638

    Article  CAS  Google Scholar 

  32. Hakuli, A., Kytökivi, A., Krause, A.O.I., and Suntola, T., J. Catal., 1996, vol. 161, no. 1, pp. 393–400. https://doi.org/10.1006/jcat.1996.0197

    Article  CAS  Google Scholar 

  33. De Rossi, S., Ferraris, G., Fremiotti, S., Cimino, A., and Indovina, V., Appl. Catal. A, 1992, vol. 81, no. 1, pp. 113–132. https://doi.org/10.1016/0926-860X(92)80264-D

    Article  CAS  Google Scholar 

  34. De Rossi, S., Ferraris, G., Fremiotti, S., Garrone, E., Ghiotti, G., Campa, M.C., and Indovina, V., J. Catal., 1994, vol. 148, no. 1, pp. 36–46. https://doi.org/10.1006/jcat.1994.1183

    Article  CAS  Google Scholar 

  35. Hakuli, A., Kytökivi, A., and Krause, A.O.I., Appl. Catal. A, 2000, vol. 190, nos. 1–2, pp. 219–232. https://doi.org/10.1016/S0926-860X(99)00310-5

    Article  CAS  Google Scholar 

  36. Weckhuysen, B.M., Ridder, L.M. De, Grobet, P.J., and Schoonheydt, R.A., J. Phys. Chem., 1995, vol. 99, no. 1, pp. 320–326. https://doi.org/10.1021/j100001a048

    Article  CAS  Google Scholar 

  37. Matsunaga, Y., Bull. Chem. Soc. Jpn., 1957, vol. 30, no. 8, pp. 868–872. https://doi.org/10.1246/bcsj.30.868

    Article  CAS  Google Scholar 

  38. Dumez, F.J. and Froment, G.F., Ind. Eng. Chem. Process Des. Dev., 1976, vol. 15, no. 2, pp. 291–301. https://doi.org/10.1021/i260058a014

    Article  CAS  Google Scholar 

  39. Airaksinen, S.M.K., Bañares, M.A., and Krause, A.O.I., J. Catal., 2005, vol. 230, no. 2, pp. 507–513. https://doi.org/10.1016/j.jcat.2005.01.005

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Cand. Sci. (Phys.-Math.) S.V. Cherepanova, Cand. Sci. (Phys.-Math.) T.V. Larina, and T.Ya. Efimenko for participation in studying the samples.

Funding

The study was performed within the framework of the government assignment for the Institute of Catalysis, Siberian Branch, Russian Academy of Sciences (project АААА-А21-121011890074-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Nazimov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 9, pp. 1195–1203, January, 2021 https://doi.org/10.31857/S0044461821090097

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazimov, D.A., Klimov, O.V., Saiko, A.V. et al. Effect of Steam–Air Treatment of Alumina–Chromia Dehydrogenation Catalysts on Their Physicochemical and Catalytic Characteristics. Russ J Appl Chem 94, 1283–1291 (2021). https://doi.org/10.1134/S1070427221090111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221090111

Keywords:

Navigation