Skip to main content
Log in

Synthesis of Selenium Nanoparticles Stabilized with Sodium Carboxymethylcellulose for Preparation of a Long-Acting Form of Prospidine

  • Macromolecular Compounds and Polymeric Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Stable selenium nanoparticles were synthesized in a sodium carboxymethylcellulose (Na-CMC) solution with a degree of substitution of 0.85 and an average molar weight of 250 000. The shape and size of selenium nanoparticles were determined by dynamic light scattering and UV spectroscopy. It was found that the nanoparticles coated with Na-CMC are stable upon storage for 28 days. A significant prolongation of the release of the prospidine antitumor agent from stabilized nanoparticles has been shown. Broad spectrum drugs, in particular, anticancer drugs and drugs that compensate for selenium deficiency in the body can be produced based on the selenium nanoparticles coated with Na-CMC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Ibrahim, O.M., El-Deeb, N.M., Abbas, H., Elmasry, S.M., and El-Aassar, M.R., Int. J. Biol. Macromol., 2020, vol. 146, pp. 119–131. https://doi.org/10.1016/j.ijbiomac.2019.12.266

    Article  CAS  PubMed  Google Scholar 

  2. Ganipineni, L.P., Danhier, F., and Préat, V., J. Controlled Release, 2018, vol. 281, pp. 42–57. https://doi.org/10.1016/j.jconrel.2018.05.008

    Article  CAS  Google Scholar 

  3. Solomevich, S.O., Bychkovsky, P.M., Yurkshtovich, T.L., Golub, N.V., Mirchuk, P.Y., Revtovich, M.Y., and Shmak, A.I., Carbohydr. Polym., 2019, vol. 226, ID 115308. https://doi.org/10.1016/j.carbpol.2019.115308

    Article  CAS  PubMed  Google Scholar 

  4. Wu, H., Li, X., Liu, W., Chen, T., Li, Y., Zheng, W., Wing-Yin Man, C., Wong, M.-K., and Wong, K.-H., J. Mater. Chem., 2012, vol. 22, pp. 9602–9610. https://doi.org/10.1039/C2JM16828F

    Article  CAS  Google Scholar 

  5. Shuang, Li, Fuling, Bian, Ling, Yue, Hua, Jin, Zongguo, Hong, and Guangwen, Shu, Int. J. Biol. Macromol., 2014, vol. 69, pp. 64–72. https://doi.org/10.1016/j.ijbiomac.2014.05.020

    Article  CAS  Google Scholar 

  6. Cui, D., Ma, J., Liang, T., Sun, L., Meng, L., Liang, T., and Li, Q., Int. J. Biol. Macromol., 2019, vol. 137, pp. 829–835. https://doi.org/10.1016/j.ijbiomac.2019.07.031

    Article  CAS  PubMed  Google Scholar 

  7. Li, H., Liu, D., Li, S., and Xue, C., Int. J. Biol. Macromol., 2019, vol. 129, pp. 818–826. https://doi.org/10.1016/j.ijbiomac.2019.02.085

    Article  CAS  PubMed  Google Scholar 

  8. Asghari-Paskiabi, F., Imani, M., Razzaghi-Abyaneh, M., and Rafii-Tabar, H., Sci. Iran., 2018, vol. 25, no. 3, pp. 1857–1863. https://doi.org/10.24200/SCI.2018.5301.1192

    Article  Google Scholar 

  9. Tang, S., Wang, T., Jiang, M., Huang, C., Lai, C., Fan, Y., and Yong, Q., Int. J. Biol. Macromol., 2019, vol. 128, pp. 444–451. https://doi.org/10.1016/j.ijbiomac.2019.01.152

    Article  CAS  PubMed  Google Scholar 

  10. Liu, L., Xiao, Z., Niu, S., He, Y., Wang, G., Pei, X., Tao, W., and Wang, M., Mater. Des., 2019, vol. 182, ID 108024. https://doi.org/10.1016/j.matdes.2019.108024

    Article  CAS  Google Scholar 

  11. Yurkshtovich, T.L., Golub, N.V., Solomevich, S.O., Kosterova, R.I., Yurkshtovich, N.K., Alinovskaya, V.A., and Bychkovsky, P.M., Colloid, J., 2019, vol. 81, no. 3, pp. 329–336. https://doi.org/10.1134/S1061933X19030165

    Article  CAS  Google Scholar 

  12. Haroon, M., Wang, L., Yu, H., Ullah, R.S., Zain-ul-Abdin, Khan, R.U., Chen, Q., and Liu, J., Carbohydr. Polym., 2018, vol. 186, pp. 150–158. https://doi.org/10.1016/j.carbpol.2018.01.052

    Article  CAS  PubMed  Google Scholar 

  13. Yang, X., Shi, X., Dʹarcy, R., Tirelli, N., and Zhai, G., J. Controlled Release, 2018, vol. 272, pp. 114–144. https://doi.org/10.1016/j.jconrel.2017.12.033

    Article  CAS  Google Scholar 

  14. Zhang S.-Y., Zhang, J., Wangб H.-Y., and Chen H.-Y., Mater. Lett., 2004, vol. 58, no. 21, pp. 2590–2594. https://doi.org/10.1016/j.matlet.2004.03.031

    Article  CAS  Google Scholar 

  15. Solomevich, S.O., Bychkovskii, P.M., Yurkshtovich, T.L., and Golub, N.V., Russ. J. Appl. Chem., 2016, vol. 89, no. 8, pp. 1302–1308. https://doi.org/10.1134/S1070427216080140 

    Article  CAS  Google Scholar 

  16. Solomevich, S.O., Cherkasova, A.V., Salamevich, D.A., Aharodnikau, U.E., Bychkovsky, P.M., and Yurkshtovich, T.L., Mater. Lett., 2021, vol. 293, ID 129720.

    Article  CAS  Google Scholar 

  17. Yurkshtovich, T.L., Solomevich, S.O., Golub, N.V., Alinovskaya, V.A., Kosterova, R.I., Bychkovskii, P.M., and Kladiev, A.A., Colloid J. 2014, vol. 76, no. 5, pp. 628–636. https://doi.org/10.1134/S1061933X14050172

    Article  CAS  Google Scholar 

  18. Bartosiak, M., Giersz, J., and Jankowski, K., Microchem. J., 2019, vol. 145, pp. 1169–1175. https://doi.org/10.1016/j.microc.2018.12.024

    Article  CAS  Google Scholar 

  19. Scott, R., MacPherson, A., Yates, R.W., Hussain, B., and Dixon, J., Brit. J. Urol., 1998, vol. 82, no. 1, pp. 76–80. https://doi.org/10.1046/j.1464-410x.1998.00683.x

    Article  CAS  PubMed  Google Scholar 

  20. Potapov, A.L., Ivanova, N.A., and Agabekov, V.E., Polimer. materialy i tekhnologii, 2016, vol. 2, no. 3, pp. 24–29.

    Article  Google Scholar 

  21. Rajagopal, G., Nivetha, A., Ilango, S., Muthudevi, G.P., Prabha, I., and Arthimanju, R., J. Environ. Chem. Eng., 2021, vol. 9, no. 4, ID 105483. https://doi.org/10.1016/j.jece.2021.105483.

    Article  CAS  Google Scholar 

  22. Hanna, D.H., Lotfy, V.F., Basta, A.H., and Saad, G.R., Int. J. Biol. Macromol., 2020, vol. 150, p. 228. https://doi.org/10.1016/j.ijbiomac.2020.02.056

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the project of the Fund for Support of Fundamental Research of the Academy of Sciences of the Republic of Uzbekistan, vol. 1–18 “Revealing the patterns of the formation of selenium nanoparticles in the polymer structure for the creation of original anticancer drugs” and the international project Uzbekistan–Belarus with financial support from the Ministry of Innovative Development of the Republic of Uzbekistan and Ministry of Education of the Republic of Belarus “Creation of polymer forms of drugs for the treatment of oncological diseases based on selenium nanoparticles stabilized on biodegradable polymer substrates of natural origin.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Solomevich.

Ethics declarations

The authors declare that they have no conflicts of interest requiring disclosure in this article.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 9, pp. 1186–1194, January, 2021 https://doi.org/10.31857/S0044461821090085

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yunusov, K.E., Sarymsakov, A.A., Turakulov, F.M. et al. Synthesis of Selenium Nanoparticles Stabilized with Sodium Carboxymethylcellulose for Preparation of a Long-Acting Form of Prospidine. Russ J Appl Chem 94, 1259–1266 (2021). https://doi.org/10.1134/S1070427221090081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221090081

Keywords:

Navigation