Skip to main content
Log in

Change in the Functional Composition of the Carbon Surface upon Water Vapor Activation

  • Sorption and Ion Exchange Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The method of mathematical processing of IR transmission spectra, which consists in estimating the changes in the absorption fraction of certain groups during the activation, was used to reveal weak systematic changes in the functional composition of the activated carbon surface. Analysis of the spectra of activated carbon samples prepared from bamboo stems and birch wood using this method has shown that activation is accompanied by condensation of aromatic nuclei, which leads to the formation of polyaromatic structures. To estimate the size of aromatic fragments, we calculated the ratio of the integrated intensity of the stretching vibration band of aromatic clusters at 1560 cm–1 to the integrated intensity of the vibration band of C–H bond at 870 cm–1. It is shown that an increase in the degree of burnout of charcoal upon activation is accompanied by an increase in the size of polycyclic aromatic structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Ruiz, V., Blanco, C., Santamaria, R., Ramos-Fernandez, J.M., Martinez-Escandell, M., Sepulveda-Escrabano, A., and Rodriguez-Reinoso, F., Carbon, 2009, vol. 47, no. 1, pp. 195–200. https://doi.org/10.1016/j.carbon.2008.09.048

    Article  CAS  Google Scholar 

  2. Yang, H., Huan, B., Chen, Y., Gao, Y., Li, J., and Chen, H., Energ. Fuel, 2016, vol. 30, no. 8, pp. 6430–6439. https://doi.org/10.1021/acs.energyfuels.6b00732

    Article  CAS  Google Scholar 

  3. Song-lin, Z., Shang-yu, G., Xi-gen, Y., Bo-sen, X., J. Forestry Res., 2003, vol. 14, no. 1, pp. 75–79. https://doi.org/10.1007/BF02856768

    Article  Google Scholar 

  4. Sanford, J.R., Larson, R.A., and Runge, T., Sci. Total. Environ., 2019, vol. 669, pp. 938–947. https://doi.org/10.1016/j.scitotenv.2019.03.061

    Article  CAS  PubMed  Google Scholar 

  5. Yahya, M.A., Al-Qodah, Z., Ngah, C.W.Z., Renew. Sust. Energ. Rev., 2015, vol. 46, pp. 218–235. https://doi.org/10.1007/BF02856768

    Article  CAS  Google Scholar 

  6. Zhang, Y., Ma, Z., Zhang, Q., Wang, J., Ma, Q., Yang, Y., Luo, X., Zhang, W., BioResources, 2017, vol. 12, no. 3, pp. 4652–4669. https://doi.org/10.15376/biores.12.3.4652-4669

    Article  CAS  Google Scholar 

  7. Belyaeva, O.V., Krasnova, T.A., Semenova, S.A., and Gladkova, O.S., Solid Fuel Chem., 2011, vol. 45, no. 6, pp. 418–421. https://doi.org/10.3103/S0361521911060024

    Article  CAS  Google Scholar 

  8. El Marouani, M., El Hrech, N., El Jastimi, J., El Hajji, A., Rghioui, L., Sebbahi, S., El Hajjaji, S., and Kifani-Sahban, F., J. Mater. Environ. Sci., 2017, vol. 8, no. 12, pp. 4313–4322. https://doi.org/10.26872/jmes.2017.8.12.454

    Article  CAS  Google Scholar 

  9. Sharma, R.K., Wooten, J.B., Baliga, V.L., Lin, X., Chan, W.G., and Hajaligol, M.R., Fuel, 2004, vol. 83, no. 11/12, pp. 1469–1482. https://doi.org/10.1016/j.fuel.2003.11.015

    Article  CAS  Google Scholar 

  10. Acik, G., Lee, C., Mattevi, C., Chhowalla, M., Cho, K., and Chabal, Y.J., Nature Mater., 2010, vol. 9, no. 9, pp. 840–845. https://doi.org/10.1038/nmat2858

    Article  CAS  Google Scholar 

  11. Stepan’yan, S.G., Ivanov, A.Yu., Adamovich, L., and Karachevtsev, V.A., Nanosistemi, Nanomater?ali, Nanotekhnolog??, 2016, vol. 14, no. 4, pp. 513–526. https://doi.org/10.15407/nnn

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

O.Yu. Derkacheva performed registration and mathematical processing of IR spectra; D.A. Ponomarev prepared the article for publication; A.A. Spitsyn carried out the carbonization of the original bamboo; Chu Kong Ng’i prepared samples of the original plant material and carried out the activation of charcoal.

Corresponding authors

Correspondence to O. Yu. Derkacheva or D. A. Ponomarev.

Ethics declarations

The authors declare that they have no conflicts of interest requiring disclosure in this article.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 7, pp. 947–952, January, 2021 https://doi.org/10.31857/S0044461821070173

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derkacheva, O.Y., Ponomarev, D.A., Spitsyn, A.A. et al. Change in the Functional Composition of the Carbon Surface upon Water Vapor Activation. Russ J Appl Chem 94, 996–1001 (2021). https://doi.org/10.1134/S1070427221070181

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221070181

Keywords:

Navigation