Skip to main content
Log in

Deactivation and Activation of Coordination Catalysts in Liquid-Phase Synthesis of Tris(hydroxymethyl)phosphine

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The thermodynamic functions and equilibrium constants of the reactions of nickel(II) chloride deactivation with phosphine and of synthesis of hydroxymethylphosphines and the possible structures of mixed-ligand complexes of Ni(II), Pd(II), and Pt(II) chlorides under the conditions of liquid-phase catalytic synthesis of tris(hydroxymethyl)phosphine were determined by quantum-chemical methods. The calculations were performed using B3LYP hybrid density functional and LANL2DZ basis set, taking into account the hydration effects. The calculation results gave insight into the primary step of the reaction of phosphine with formaldehyde in the presence of catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Petrov, K.А. and Parshina, V.A., Russ. Chem. Rev., 1968, vol. 37, no. 7, pp. 532–543. https://doi.org/10.1070/RC1968v037n07ABEH001664 

    Article  Google Scholar 

  2. Patent US 3704325, Publ. 1972.

  3. Patent US 3729516, Publ. 1973.

  4. USSR Inventor’s Certificate 138617, Publ. 1961.

  5. Patent FRG 1035135, Publ. 1959.

  6. Koch, W. and Holthausen, M.C., A Chemist’s Guide to Density Functional Theory, Wiley-VCH, 2001. https://doi.org/10.1002/3527600043

    Book  Google Scholar 

  7. Chuev, G.N. and Basilevsky, M.V., Russ. Chem. Rev., 2003, vol. 72, no. 9, pp. 735–757. https://doi.org/10.1070/RC2003v072n09ABEH000775 

    Article  CAS  Google Scholar 

  8. Tomasi, J., Mennucci, B., and Cammi, R., Chem. Rev., 2005, vol. 105, no. 8, pp. 2999–3094. https://doi.org/10.1021/cr9904009

    Article  CAS  Google Scholar 

  9. Purdela, D. and Vilceanu, R., Chimia compuşilor organici fosforului şi ai acizilor lui, Bucharest: Academiei, 1965.

    Google Scholar 

  10. Trofimov, B.A., Arbuzova, S.N., and Gusarova, N.K., Russ. Chem. Rev., 1999, vol. 68, no. 3, pp. 215–227. https://doi.org/10.1070/RC1999v068n03ABEH000464

    Article  CAS  Google Scholar 

  11. Sokol’skii, D.V. and Dorfman, Ya.A., Kataliz ligandami v vodnykh rastvorakh (Catalysis with Ligands in Aqueous Solutions), Alma-Ata: Nauka Kaz. SSR, 1972.

    Google Scholar 

  12. Sokol’skii, D.V., Dorfman, Ya.A., and Rakitskaya, T.L., Protonno-aprotonnyi kataliz (Protic and Aprotic Catalysis), Alma-Ata: Nauka Kaz. SSR, 1975.

    Google Scholar 

  13. Grekov, L.I. and Litinskii, A.O., Modeling of physicochemical processes in the development of the tris(hydroxymethyl)phosphine synthesis technology, Modelirovanie neravnovesnykh fiziko-khimicheskikh protsessov: monografiya (Simulation of Nonequilibrium Physicochemical Processes: a Monograph), Volgograd: Volgogradskii Gos. Univ., 2018.

    Google Scholar 

  14. Walker, J.F., Formaldehyde, Reinhold, 1953.

    Google Scholar 

  15. Korolev, G.V., Mogilevich, M.M., and Il’in, A.A., Assotsiatsiya zhidkikh organicheskikh soedinenii: vliyanie na fizicheskie svoistva i polimerizatsionnye protsessy (Association of Liquid Organic Compounds: Effect on Physical Properties and Polymerization Processes), Moscow: Mir, 2002.

    Google Scholar 

  16. Grekov, L.I., Vestn. Kazansk. Tekhnol. Univ., 2018, vol. 21, no. 3, pp. 12–16.

    CAS  Google Scholar 

  17. Grekov, L.I., Novakov, I.A., and Tuzhikov, O.I., Khim. Prom-st. Segodnya, 2003, no. 12, pp. 9–14.

    Google Scholar 

  18. Grekov, L.I. and Novakov, I.A., Kinet. Catal., 2006, vol. 47, no. 3, pp. 358–366. https://doi.org/10.1134/S0023158406030062

    Article  CAS  Google Scholar 

  19. Grekov, L.I., Khim. Prom–st. Segodnya, 2018, no. 3, pp. 3–8.

    Google Scholar 

  20. Hoye, P.A.T., Pringle, P.G., Smith, M.B., and Worboys, K., J. Chem. Soc., Dalton Trans., 1993, no. 2, pp. 269–274. https://doi.org/10.1039/dt9930000269

    Article  Google Scholar 

  21. Harrison, K.N., Hoye, P.A., Orpen, A.G., Pringle, P.G., and Smith, M.B., J. Chem. Soc., Chem. Commun., 1989, no. 16, pp. 1096–1099. https://doi.org/10.1039/с39890001096

    Article  Google Scholar 

  22. Dorfman, Ya.A., Yukht, I.M., Levina, L.V., Polimbetova, G.S., Petrova, T.V., and Emel’yanova, V.S., Russ. Chem. Rev., 1991, vol. 60, no. 6, pp. 605–627. https://doi.org/10.1070/RC1991v060n06ABEH001097

    Article  Google Scholar 

  23. Masters, C., Homogeneous Transition-Metal Catalysis, London: Chapman and Hall, 1981.

    Google Scholar 

  24. Dorfman, Ya.A., Zhidkofaznyi kataliz (orbital’noe modelirovanie) (Liquid-Phase Catalysis (Orbital Simulation)), Alma-Ata: Nauka Kaz. SSR, 1981, pp. 12–23.

    Google Scholar 

  25. Fedotov, V.Kh., Kol’tsov, N.I., and Kos’yanov, P.M., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2020, vol. 63, no. 2, pp. 14–20. https://doi.org/10.6060/ivkkt.20206302.6053

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Grekov.

Ethics declarations

The author declares that he has no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 7, pp. 919–926, January, 2021 https://doi.org/10.31857/S0044461821070148

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grekov, L.I. Deactivation and Activation of Coordination Catalysts in Liquid-Phase Synthesis of Tris(hydroxymethyl)phosphine. Russ J Appl Chem 94, 969–976 (2021). https://doi.org/10.1134/S1070427221070156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221070156

Keywords:

Navigation