Skip to main content
Log in

Atomic Layer Deposition and Thermal Transformations of Thin Titanium–Vanadium Oxide Films

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Titanium–vanadium oxide (TixVyOz) nanofilms were prepared by atomic layer deposition using TiCl4, VOCl3, and water. The film growth was monitored in situ by quartz crystal microbalance. At a deposition temperature of 115°С, the films grew linearly with number of deposition cycles, and the surface reactions of the precursors were self-limiting. Films of two compositions, Ti0.9V0.1O3 and Ti0.5V0.5O3, were prepared; their density was 3.5 and 3.3 g cm–3, respectively. The content of Cl impurities in the films obtained was less than 0.2 at. %, the coating roughness was ~4.0 Å, and the band gap was 3.05 and 2.85 eV for Ti0.9V0.1O3 and Ti0.5V0.5O3, respectively. All the films obtained were amorphous. The heat treatment of the Ti0.5V0.5O3 film in air led to the formation of heterostructural TiO2–V2O5 coatings. At 450°С, nanostructures consisting of anatase TiO2 and nanorods of microcrystalline V2O5 were formed. An increase in the annealing temperature to 500°С led to increase in the length of V2O5 nanowires to tens of micrometers and to their separation from the substrate, and after annealing at 550°С the substrate surface was uniformly coated with nanoparticles. The films obtained in this study can find use in the development of catalysts and power storage systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Aleskovskii, V.B., Stekhiometriya i sintez tverdykh soedinenii (Stoichiometry and Synthesis of Solid Compounds), Leningrad: Nauka, 1976.

    Google Scholar 

  2. George, S.M., Chem. Rev., 2010, vol. 110, no. 1, pp. 111–131. https://doi.org/10.1021/cr900056b

    Article  CAS  PubMed  Google Scholar 

  3. Noman, M.T., Ashraf, M.A., and Ali, A., Environ. Sci. Pollut. Res., 2019, vol. 26, no. 4, pp. 3262–3291. https://doi.org/10.1007/s11356-018-3884-z

    Article  CAS  Google Scholar 

  4. Lebedev, M.S., Khmel, S.Ya., Lyulyukin, M.N., Petukhova, D.E., and Barsukov, A.V., Vacuum, 2019, vol. 165, pp. 51–57. https://doi.org/10.1016/j.vacuum.2019.03.059

    Article  CAS  Google Scholar 

  5. Ren, W.J., Ai, Zh., Jia, F., Zhang, L., Fan, X., and Zou, Zh., Appl. Catal., 2007, vol. 69, nos. 3–4, pp. 138–144. https://doi.org/10.1016/j.apcatb.2006.06.015

    Article  CAS  Google Scholar 

  6. Fujishima, A. and Zhang, X.T., C. R. Chim., 2006, vol. 9, nos. 5–6, pp. 750–760. https://doi.org/10.1016/j.crci.2005.02.055

    Article  CAS  Google Scholar 

  7. Etacheri, V., Valentin, C.D., Schneider, J., Bahnemann, D., and Pillai, S.C., J. Photochem. Photobiol. C, 2015, vol. 25, pp. 1–29. https://doi.org/10.1016/j.jphotochemrev.2015.08.003

    Article  CAS  Google Scholar 

  8. Daghrir, R., Drogui, P., and Robert, D., Ind. Eng. Chem. Res., 2013, vol. 52, no. 10, pp. 3581–3599. https://doi.org/10.1021/ie303468t

    Article  CAS  Google Scholar 

  9. Tian, L., Soum-Glaude, A., Volpi, F., Salvo, L., Berthom, G., Coindeau, S., Mantoux, A., Boichot, el R., Lay, S., Briz, V., and Blanquetet, E., J. Vac. Sci. Technol. A, 2015, vol. 33, no. 1, pp. 01A141-1–01A141-8. https://doi.org/10.1116/1.4904025

    Article  CAS  Google Scholar 

  10. Lee, A., Libera, J.A., Waldman, R.Z., Ahmed, A., Avila, J.R., Elam, J.W., and Darling, S.B., Adv. Sustain. Syst., 2017, vol. 1, nos. 1–2, ID 1600041. https://doi.org/10.1002/adsu.201600041

    Article  CAS  Google Scholar 

  11. Pore, V., Heikkilä, M., Ritala, M., Leskelä, M., and Areva, S., J. Photochem. Photobiol. A, 2006, vol. 177, no. 1, pp. 68–75. https://doi.org/10.1016/j.jphotochem.2005.05.013

    Article  CAS  Google Scholar 

  12. Niemela, J.P., Yamauchi, H., and Karppinen, M., Thin Solid Films, 2014, vol. 551, pp. 19–22. https://doi.org/10.1016/j.tsf.2013.11.043

    Article  CAS  Google Scholar 

  13. Pore, V., Ritala, M., Leskelä, M., Areva, S., Järnc, M., and Järnström, J., J. Mater. Chem., 2007, vol. 17, no. 14, pp. 1361–1371. https://doi.org/10.1039/B617307A

    Article  CAS  Google Scholar 

  14. Su, C.Y., Wang, L.Ch., Liu, W.S., Wang, Ch.Ch., and Pernget, T.P., ACS Appl. Mater. Interfaces, 2018, vol. 10, no. 39, pp. 33287–33295. https://doi.org/10.1021/acsami.8b12299

    Article  CAS  PubMed  Google Scholar 

  15. Pore, V., Kivelä, T., Ritala, M., and Leskelä, M., Dalton Trans., 2008, vol. 45, pp. 6467–6474. https://doi.org/10.1039/B809953G

    Article  Google Scholar 

  16. Choi, J.H., Kwon, S.H., Jeong, Y.K., Kim, Il., and Kim, K.H., J. Electrochem. Soc., 2011, vol. 158, no. 6, pp. B749–B753. https://doi.org/10.1149/1.3582765

    Article  CAS  Google Scholar 

  17. Klosek, S. and Raftery, D., J. Phys. Chem. B, 2001, vol. 105, no. 14, pp. 2815–2819. https://doi.org/10.1021/jp004295e

    Article  CAS  Google Scholar 

  18. Gu, D.E., Yang, B.C., and Hu, Y.D., Catal. Lett., 2007, vol. 118, nos. 3–4, pp. 254–259. https://doi.org/10.1007/s10562-007-9179-5

    Article  CAS  Google Scholar 

  19. Weckhuysen, B.M. and Keller, D.E., Catal. Today, 2003, vol. 78, nos. 1–4, pp. 25–46. https://doi.org/10.1016/S0920-5861(02)00323-1

    Article  CAS  Google Scholar 

  20. Anh, L.T., Rai, A.K., Thi, T.V., Gim, J., Kim, S., Shin, E.Ch., Lee, J.S., and Kim, J., J. Power Sources, 2013, vol. 243, pp. 891–898. https://doi.org/10.1016/j.jpowsour.2013.06.080

    Article  CAS  Google Scholar 

  21. Marschall, R., Adv. Funct. Mater., 2014, vol. 24, no. 17, pp. 2421–2440. https://doi.org/10.1002/adfm.201303214

    Article  CAS  Google Scholar 

  22. Mikhailovskii, S.V., Zhilyaeva, N.A., Obletsova, A.A., Ermilova, M.M., Orekhova, N.V., Malygin, A.A., and Yaroslavtsev, A.B., Russ. J. Appl. Chem., 2016, vol. 89, no. 1, pp. 34–39. https://doi.org/10.1134/S1070427216010055

    Article  CAS  Google Scholar 

  23. Mikhailovskii, S.V., Chernov, A.S., Mironova, E.Yu., Ermilova, M.M., Orekhova, N.V., and Malygin, A.A., Russ. J. Appl. Chem., 2014, vol. 87, no. 1, pp. 23–30. https://doi.org/10.1134/S1070427214010030

    Article  CAS  Google Scholar 

  24. Drozdov, E.O., Gukova, A.N., Dubrovenskii, S.D., and Malygin, A.A., Russ. J. Gen. Chem., 2016, vol. 86, no. 9, pp. 2113–2123. https://doi.org/10.1134/S1070363216090231.

    Article  CAS  Google Scholar 

  25. Elam, J.W., Groner, M.D., and George, S.M., Rev. Sci. Instrum., 2002, vol. 73, no. 8, pp. 2981–2987. https://doi.org/10.1063/1.1490410

    Article  CAS  Google Scholar 

  26. Haber, J., Catal. Today, 2009, vol. 142, nos. 3–4, pp. 100–113. https://doi.org/10.1016/j.cattod.2008.11.007

    Article  CAS  Google Scholar 

  27. Glushenkov, A.M., Stukachev, V.I., Hassan, M.F., Kuvshinov, G.G., Liu, H.K., and Chen, Y., Cryst. Growth Des., 2008, vol. 8, no. 10, pp. 3661–3665. https://doi.org/10.1021/cg800257d

    Article  CAS  Google Scholar 

  28. Malygin, A.A., Russ. J. Gen. Chem., 2002, vol. 72, no. 4, pp. 575–589.

    Article  CAS  Google Scholar 

  29. Malygin, A.A., Compos. Interfaces, 1998, vol. 5, no. 6, pp. 561–569. https://doi.org/10.1163/156855498X00072

    Article  CAS  Google Scholar 

  30. Aarik, J., Aidla, A., Mändar, H., and Uustare, T., Appl. Surf. Sci., 2001, vol. 172, nos. 1–2, pp. 148–158. https://doi.org/10.1016/S0169-4332(00)00842-4

    Article  CAS  Google Scholar 

  31. Malkov, A.A., Sosnov, E.A., Osipenkova, O.V., and Malygin, A.A., Appl. Surf. Sci., 1997, vol. 108, no. 1, pp. 133–139. https://doi.org/10.1016/S0169-4332(96)00568-5

    Article  CAS  Google Scholar 

  32. Elam, J.W. and George, S.M., Chem. Mater., 2003, vol. 15, no. 4, pp. 1020–1028. https://doi.org/10.1021/cm020607+

    Article  CAS  Google Scholar 

  33. Piercy, B.D., Leng, C.Z., and Losego, M.D., J. Vac. Sci. Technol. A, 2017, vol. 35, no. 3, ID 03E107. https://doi.org/10.1116/1.4979047

    Article  CAS  Google Scholar 

  34. Aarik, J., Aidla, A., Uustare, T., and Sammelselget, V., J. Cryst. Growth, 1995, vol. 148, no. 3, pp. 268–275. https://doi.org/10.1016/0022-0248(94)00874-4

    Article  CAS  Google Scholar 

  35. Aarik, J., Aidla, A., Kiisler, A.A., Uustare, T., and Sammelselget, V., Thin Solid Films, 1997, vol. 305, nos. 1–2, pp. 270–273. https://doi.org/10.1016/S0040-6090(97)00135-1

    Article  CAS  Google Scholar 

  36. Malygin, A.A., Volkova, A.N., Kol’tsov, S.I., and Aleskovskii, V.B., Russ. J. Gen. Chem., 1972, vol. 42, no. 11, pp. 2373–2375.

    CAS  Google Scholar 

  37. Triani, G., Campbell, J.A., Evans, P.J., Davis, J., Latella, B.A., and Burford, R.P., Thin Solid Films, 2010, vol. 518, no. 12, pp. 3182–3189. https://doi.org/10.1016/j.tsf.2009.09.010

    Article  CAS  Google Scholar 

  38. Iatsunskyi, I., Pavlenko, M., Viter, R., Jancelewicz, M., Nowaczyk, G., Baleviciute, I., Załęski, K., Jurga, S., Ramanavicius, A., and Smyntyna, V., J. Phys. Chem. C, 2015, vol. 119, no. 13, pp. 7164–7171. https://doi.org/10.1021/acs.jpcc.5b01670

    Article  CAS  Google Scholar 

  39. Schneider, K., J. Mater Sci: Mater Electron., 2020, vol. 31, pp. 10478–10488. https://doi.org/10.1007/s10854-020-03596-0

    Article  CAS  Google Scholar 

  40. Raja, S., Subramani, G., Bheeman, D., Rajamani, R., and Bellan, Ch.Sh., Optik, 2016, vol. 127, no. 1, pp. 461–464. https://doi.org/10.1016/j.ijleo.2015.08.045

    Article  CAS  Google Scholar 

  41. Ostermann, R., Li, D., Yin, Y., McCann, J.T., and Xia, Y., Nano Lett., 2006, vol. 6, no. 6, pp. 1297–1302. https://doi.org/10.1021/nl060928a

    Article  CAS  PubMed  Google Scholar 

  42. Habel, D., Goerke, O., Tovar, M., and Kondratenko, E.V., J. Phase Equilib. Diffus., 2008, vol. 29, no. 6, pp. 482–487. https://doi.org/10.1007/s11669-008-9391-z

    Article  CAS  Google Scholar 

  43. Overbury, S.H., Bertrand, P.A., and Somorjai, G.A., Chem. Rev., 1975, vol. 75, no. 5, pp. 547–560. https://doi.org/10.1021/cr60297a001

    Article  CAS  Google Scholar 

  44. Haber, J., Pure Appl. Chem., 1984, vol. 56, no. 12, pp. 1663–1676. https://doi.org/10.1351/pac198456121663

    Article  CAS  Google Scholar 

  45. Haber, J., Machej, T., and Czeppe, T., Surf. Sci., 1985, vol. 151, no. 1, pp. 301–310. https://doi.org/10.1016/0039-6028(85)90468-6

    Article  CAS  Google Scholar 

  46. Chen, K.D., Bell, A.T., and Iglesia, E., J. Phys. Chem. B, 2000, vol. 104, no. 6, pp. 1292–1299. https://doi.org/10.1021/jp9933875

    Article  CAS  Google Scholar 

  47. Zou, C.W., Fan, L., Chen, R., Yan, X., Yan, W., Pan, G., Wu, Z., and Gaoet, W., CrystEngComm., 2012, vol. 14, no. 2, pp. 626–631. https://doi.org/10.1039/C1CE06170D

    Article  CAS  Google Scholar 

  48. Zou, C.W., Yan, X.D., Patterson, D.A., Emanuelsson, E.A., Bianb, J.M., and Gao, W., CrystEngComm, 2010, vol. 12, no. 3, pp. 691–693. https://doi.org/10.1039/B916614A

    Article  CAS  Google Scholar 

  49. Zhang, J., Xu, Q., Feng, Zh., and Li, C., Environmentally Benign Photocatalysts: Applications of Titanium Oxide-Based Materials, Canada: Springer, 2010, pp. 153–184. https://doi.org/10.1007/978-0-387-48444-0_6

    Article  Google Scholar 

  50. Su, Q., Liu, X.Q., Ma, H.L., Guo, Y.P., and Wang, Y.Y., J. Solid State Chem., 2008, vol. 12, nos. 7–8, pp. 919–923. https://doi.org/10.1007/s10008-008-0515-5

    Article  CAS  Google Scholar 

  51. Zhang, J., Li, M., Feng, Zh., Chen, J., and Li, C., J. Phys. Chem. B, 2006, vol. 110, no. 2, pp. 927–935. https://doi.org/10.1021/jp0552473

    Article  CAS  PubMed  Google Scholar 

  52. Vejux, A. and Courtine, P., J. Solid State Chem., 1978, vol. 23, nos. 1–2, pp. 93–103. https://doi.org/10.1016/0022-4596(78)90055-5

    Article  CAS  Google Scholar 

  53. Vejux, A. and Courtine, P., J. Solid State Chem., 1986, vol. 63, no. 2, pp. 179–190. https://doi.org/10.1016/0022-4596(86)90169-6

    Article  CAS  Google Scholar 

  54. Wang, Y., Su, Y.R., Qiao, L., Liu, L.X., Su, Q., Zhu, C.Q., and Liuet, X.Q., Nanotechnology, 2011, vol. 22, no. 22, ID 225702. https://doi.org/10.1088/0957-4484/22/22/225702

    Article  CAS  PubMed  Google Scholar 

  55. Wang, H.L., Zhang, L., Chen, Zh., Hu, J., Li, Sh., Wang, Zh., Liu, J., and Wang, X., Chem. Soc. Rev., 2014, vol. 43, no. 15, pp. 5234–5244. https://doi.org/10.1039/C4CS00126

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

I.M. Abdulagatov’s and D.K. Palchaev’s work was financially supported by government assignment FZNZ-2020-0002.

A.M. Maksumova’s work was financially supported by UMNIK (Genius) Program of the Foundation for Support of Innovations (contract 15221GU/2020).

Author information

Authors and Affiliations

Authors

Contributions

A.I. Abdulagatov: QCM measurements, atomic layer deposition and annealing of films, analysis of experimental data, and manuscript preparation; A.M. Maksumova: analysis of the mass change of samples in the course of atomic layer deposition and calculations required for determining the mechanism of surface chemical reactions in the course of deposition of TiO2 and TixVyOz films; D.K. Palchaev and M.Kh. Rabadanov: participation in X-ray structural analysis of the coatings; I.M. Abdulagatov: participation in discussion of the experimental results and analysis of the optical characteristics of the new materials obtained.

Corresponding author

Correspondence to I. M. Abdulagatov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 7, pp. 835–848, January, 2021 https://doi.org/10.31857/S0044461821070045

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulagatov, A.I., Maksumova, A.M., Palchaev, D.K. et al. Atomic Layer Deposition and Thermal Transformations of Thin Titanium–Vanadium Oxide Films. Russ J Appl Chem 94, 890–902 (2021). https://doi.org/10.1134/S1070427221070053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221070053

Keywords:

Navigation