Skip to main content
Log in

Photocatalytic Degradation of Antibiotic Norfloxacin Aqueous Solution by Ce/Bi2WO6: Optimization and Simulation of Process by RSM

  • Various Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 01 July 2021

This article has been updated

Abstract

This study evaluated a removal efficiency of NLFX from aqueous solutions using a photocatalytic process. In this study, Bi2WO6 were synthesized by microwave method and Ce was loaded on Bi2WO6 by wet inoculation method. The prepared photocatalysis were characterized by XRD, FTIR, SEM, EDS/Map, TEM, BET/BJH, DRS-UV/Vis analysis. The degradation of NFLX was investigated by the photocatalysis synthesized under solar light. Among the photocatalysis, Ce/Bi2WO6 (8%) had the highest NFLX degradation efficiency. Response surface methodology (RSM) with central composite design (CCD) was used to investigate pH, time, mass of catalyst Ce/Bi2WO6 (8%) g, and NFLX concentration. In optimal conditions (pH 3.75, time 126.11 min, mass of Ce/Bi2WO6 (8%) 0.03 g, and NFLX concentration 10.11 mg/L) the photocatalytic degradation percentages of NFLX were found to be 99.62%. Isothermic studies have shown that Fritz–Schlunder isotherms have the best fit with Ce/Bi2WO6 (8%) data (the least error).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

Change history

REFERENCES

  1. Payan, A., Isari, A.A., and Gholizade, N., Chem. Eng. J., 2019, vol. 361, p. 1121.

    Article  CAS  Google Scholar 

  2. Wan, Z., Hu, J., and Wang, J., J. Environ. Manage., 2016, vol. 182, p. 284.

    Article  CAS  Google Scholar 

  3. Farzadkia, M., Rahmani, K., Gholami, M., Esrafili, A., Rahmani, A., and Rahmani, H., Korean J. Chem. Eng., 2014, vol. 31, p. 2014.

    Article  CAS  Google Scholar 

  4. Daghrir, R. and Drogui, P., Environ., Chem. Letter., 2013, vol. 3, p. 209.

    Article  Google Scholar 

  5. Sudhaik, A., Raizada, P., Shandilya, P., and Singh, P., J. Environ. Chem. Eng., 2018, vol. 6, p. 3874.

    Article  CAS  Google Scholar 

  6. Caro, E., Marce, R.M., Cormack, P.A., Sherrington, D.C., and Borrull, F., Anal. Chim. Acta, 2005, vol. 3, p. 81.

    Article  Google Scholar 

  7. Chen, X. and Wang, J., Chem. Eng. J., 2020, vol. 395, p. 125095.

    Article  CAS  Google Scholar 

  8. Li, Y., Liu, J., Huang, X., and Li, G., Cryst. Growth Des., 2007, vol. 7, p. 1350.

    Article  Google Scholar 

  9. Zhang, C. and Zhu, Y., Chem. Mater., 2005, vol. 17, p. 3537.

    Article  CAS  Google Scholar 

  10. Shang, M., Wang, W., Sun, S., Zhou, L., and Zhang, L., J. Physical Chemistry, C, vol. 17, 10407, p. 2008.

    Google Scholar 

  11. Fu, H., Zhang, L., Yao, W., and Zhu, Y., Appl. Catal. B: Environ., 2006, vol. 66, p. 10.

    Article  Google Scholar 

  12. Yu, J., Xiong, J., Cheng, B., Yu, Y., and Wang, J., J. Solid State Chem., 2005, vol. 178, p. 1968.

    Article  CAS  Google Scholar 

  13. Fard, N.E., Fazaeli., R., Yousefi, M., and Abdolmoham-madi, S., Russ. J. Physic. Chem., A, 2021, vol. 95, p. 23.

    Article  Google Scholar 

  14. Huang, H., Liu, K., Chen, K., Zhang, Y., Zhang, Y., and Wang, S., J. Phys. Chem., 2014, vol. 118, 2014, p. 14379.

    CAS  Google Scholar 

  15. Kashi, N., Fard, N.E., and Fazaeli, R., Russ. J. Appl. Chem., 2017, vol. 90, p. 977.

    Article  CAS  Google Scholar 

  16. Fard, N.E. and Fazaeli, R., Iran. J. Catal., 2018, vol. 8, p. 133.

    CAS  Google Scholar 

  17. Fard, N.E. and Fazaeli, R., Russ. J. Physic. Chem., A, 2018, vol. 92, p. 2835.

    Article  Google Scholar 

  18. Fazaeli, R. and Fard, N.E., Russ. J. Appl. Chem., 2020, vol. 93, p. 973.

    Article  CAS  Google Scholar 

  19. Fard, N.E., Fazaeli, R., and Ghiasi, R., Chem. Eng. Technol., 2016, vol. 39, p. 149.

    Article  Google Scholar 

  20. Saadi, R., Saadi, Z., Fazaeli, R., and Fard, N.E., Korean J. Chem. Eng., 2015, vol. 32, p. 787.

    Article  CAS  Google Scholar 

  21. Dolgonos, A., Mason, T.O., and Poeppelmeier, K.R., J. Solid State Chem., 2016, vol. 240, p. 43.

    Article  CAS  Google Scholar 

  22. Viezbicke, B.D., Patel, S., Davis, B.E., and Birnie, D.P., Phys. Status Solidi B, 2015, vol. 252, p. 1700.

    Article  CAS  Google Scholar 

  23. Fard, N.E., Fazaeli., R., Yousefi, M., Abdolmohammadi, S., Appl. Physic., A, 2019, vol. 125, p. 632.

    Article  Google Scholar 

  24. Fard, N.E., Fazaeli., R., Yousefi, M., Abdolmohammadi, S., Chem. Select., 2019, vol. 4, p. 9529.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Somayeh Saleh Fekra, Narges Elmi Fard or Reza Fazaeli.

Ethics declarations

The authors declare that they have no conflicts of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fekra, S.S., Fard, N.E. & Fazaeli, R. Photocatalytic Degradation of Antibiotic Norfloxacin Aqueous Solution by Ce/Bi2WO6: Optimization and Simulation of Process by RSM. Russ J Appl Chem 94, 824–834 (2021). https://doi.org/10.1134/S1070427221060161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221060161

Keywords:

Navigation