Skip to main content
Log in

Life Cycle Assesment of Powertrains Based on a Battery, Hydrogen Fuel Cells, and Internal Combustion Engine for Urban Buses under the Conditions of Moscow Oblast

  • Hydrogen Technologies
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

A comparative analysis of the life cycle of powertrains based on internal combustion engines powered by diesel fuel and natural gas, on batteries, and on hydrogen fuel cells was made. The inventory information on the stages of the life cycle of powertrains was collected, including production of structural materials and assembling of powertrain components, production of fuel and power, operation, and recycling/disposal after the service life completion. The results of comprehensive estimation of the energy consumption and СО2 emissions in the life cycle are presented. The structure of the electric power production in the Moscow oblast was used for the comprehensive estimation of the parameters. The cost of hydrogen at which the powertrains based on fuel cells become economically competitive was estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Similar content being viewed by others

REFERENCES

  1. World Urbanization Prospects 2018. Highlights, United Nations, Department of Economic and Social Affairs. https://population.un.org/wup/Publications/Files/WUP2018-Highlights.pdf.

  2. Ustoichivoe razvitie gorodov. Kollektivnaya monografiya (Sustainable Urban Development: Collective Book), Papenov, K.V., Nikonorov, S.M., and Sitkina, K.S., Moscow: Economical Faculty of Moscow State Univ., 2019.

  3. Sostoyanie zagryazneniya atmosfery v gorodakh na territorii Rossii za 2018 g. (State of the Air Pollution in Towns and Cities of Russia in 2018): Annual Issue of the Voeikov Main Geophysical Observatory of the Federal Service for Hydrometeorology and Environmental Monitoring (Rosgidromet), pp. 84–164. http://voeikovmgo.ru/download/publikacii/2019/ejegodnik_zagr_atm_2018.pdf.

  4. Collura, S., Chaoui, N., Azambre, B., Finqueneisel, G., Heintz, O., Krzton, A., Koch, A., and Weber, J.V., Carbon, 2005, vol. 43, no. 3, pp. 605–613. https://doi.org/10.1016/j.carbon.2004.10.026

    Article  CAS  Google Scholar 

  5. International Energy Agency. Data and Statistics. https://www.iea.org/data-and-statistics?country=WORLD&fuel=CO2%20emissions&indicator=CO2BySector.

  6. International Energy Agency. Data and Statistics. https://www.iea.org/data-and-statistics?country=RUSSIA&fuel=CO2%20emissions&indicator=CO2BySector.

  7. Logan, K.G., Nelson, J.D., and Hastings, A., Transport. Res., Part D, 2020, vol. 85, ID 102350. https://doi.org/10.1016/j.trd.2020.102350

  8. Xylia, M., Leduc, S., Laurent, A.-B., Patrizio, P., Meer, Y., Kraxner, F., and Silveira, S., J. Cleaner Prod., 2019, vol. 209, pp. 74–87. https://doi.org/10.1016/j.jclepro.2018.10.085

    Article  Google Scholar 

  9. Spreafico, C. and Russo, D., Sustainability, 2020, vol. 12, ID 7548. https://doi.org/10.3390/su12187548

  10. Thomas, C.E., Int. J. Hydrogen Energy, 2009, vol. 34, no. 15, pp. 6005–6020. https://doi.org/10.1016/j.ijhydene.2009.06.003

    Article  CAS  Google Scholar 

  11. Liu, X., Reddi, K., Elgowainy, A., Lohse-Busch, H., Wang, M., and Rustagi, N., Int. J. Hydrogen Energy, 2020, vol. 45, pp. 972–983. https://doi.org/10.1016/j.ijhydene.2019.10.192

    Article  CAS  Google Scholar 

  12. Stenina, I.A., Safronova, E.Yu., Levchenko, A.V., Dobrovol’skii, Yu.A., and Yaroslavtsev, A.B., Teploenergetika, 2016, no. 6, pp. 4–18. https://doi.org/10.1134/S0040363616060072

    Article  Google Scholar 

  13. MacLean, H.L. and Lave, L.B., Prog. Energy Combust. Sci., 2003, vol. 29, pp. 1–69. https://doi.org/10.1016/S0360-1285(02)00032-1

    Article  CAS  Google Scholar 

  14. McKenzie, E.C. and Durango-Cohen, P.L., Transport. Res., Part D, 2012, vol. 17, pp. 39–47. https://doi.org/10.1016/j.trd.2011.09.008

    Article  Google Scholar 

  15. Mazurova, O.V., Ekon. Regiona, 2019, vol. 15, no. 2, pp. 493–505. https://doi.org/10.17059/2019-2-14

    Article  Google Scholar 

  16. Sacchi, R., Bauer, C., and Cox, B.L., Environ. Sci. Technol., 2021, vol. 55, no. 8, pp. 5224–5235. https://doi.org/10.1021/acs.est.0c07773

    Article  CAS  PubMed  Google Scholar 

  17. Hawkins, T.R., Singh, B., Majeau-Bettez, G., and Strømman, A.H., J. Ind. Ecol., 2013, vol. 17, no. 1, pp. 53–64. https://doi.org/10.1111/j.1530-9290.2012.00532.x

    Article  CAS  Google Scholar 

  18. Li, T., Liu, Z.C., Zhang, H.C., and Jiang, Q.H., J. Clean. Prod., 2013, vol. 53, pp. 7–12. https://doi.org/10.1016/j.jclepro.2013.04.034

    Article  CAS  Google Scholar 

  19. Lukanin, V.N. and Trofimenko, Yu.V., Itogi Nauki Tekh., Ser.: Avtomob. Gorodsk. Transport, 1993, vol. 17, pp. 1–136.

    Google Scholar 

  20. Kornilov, G.S., Avtotrakt. Elektrooborud., 2004, no. 10, pp. 27–32.

    Google Scholar 

  21. Zvonov, V.A., Kozlov, A.V., and Kutenev, V.F., Ekologicheskaya bezopasnost’ avtomobilya v polnom zhiznennom tsikle (Environmental Safety of a Car in the Complete Life Cycle), Moscow: NAMI, 2001.

    Google Scholar 

  22. ISO 14040:2006: Environmental Management–Life Cycle Assessment–Principles and Framework; ISO 14044:2006: Environmental Management–Life Cycle Assessment–Requirements and Guidelines.

  23. Potemkin, D.I., Uskov, S.I., Gorlova, A.M., Kirillov, V.A., Shigarov, A.B., Braiko, A.S., Rogozhnikov, V.N., Snytnikov, P.V., Pechenkin, A.A., Belyaev, V.D., Pimenov, A.A., and Sobyanin, V.A., Katal. Prom–sti., 2020, vol. 20, no. 3, pp. 184–189. https://doi.org/10.18412/1816-0387-2020-3-184-189

    Article  Google Scholar 

  24. Makaryan, I.A., Sedov, I.V., and Maksimov, A.L., Russ. J. Appl. Chem., 2020, vol. 93, pp. 1815–1830. https://doi.org/10.1134/S1070427220120034 

    Article  CAS  Google Scholar 

  25. Liu, Y., Lu, S., Yan, X., Gao, S., Cui, X., and Cui, Z., J. Clean. Prod., 2020, vol. 256, p. 120422. https://doi.org/10.1016/j.jclepro.2020.120422

    Article  CAS  Google Scholar 

  26. Cetinkaya, E., Dincer, I., and Naterer, G.F., Int. J. Hydrogen Energy, 2012, vol. 37, pp. 2071–2080. https://doi.org/10.1016/j.ijhydene.2011.10.064

    Article  CAS  Google Scholar 

  27. Salkuyeh, Y.K., Saville, B.A., and MacLean, H.L., Int. J. Hydrogen Energy, 2017, vol. 42, pp. 18894–18909. https://doi.org/10.1016/j.ijhydene.2017.05.219

    Article  CAS  Google Scholar 

  28. Koroneos, C., Dompros, A., and Roumbas, G., Chem. Eng. Process.: Process Intens., 2008, vol. 47, no. 8, pp. 1261–1268. https://doi.org/10.1016/j.cep.2007.04.003

    Article  CAS  Google Scholar 

  29. Mohr, M., Peters, J.F., Baumann, M., and Weil, M., J. Ind. Ecol., 2020, vol. 24, pp. 1310–1322. https://doi.org/10.1111/jiec.13021

    Article  CAS  Google Scholar 

  30. Sovacool, B.K., Energy Policy, 2008, vol. 36, pp. 2950–2963. https://doi.org/10.1016/j.enpol.2008.04.017

    Article  Google Scholar 

  31. GOST (State Standard) R 56276–2014 /ISO/TS 14067:2013: Greenhouse Gases. Carbon Footprint of Products.

  32. Sanchez, J.A.G., Martinez, J.M.L., Martin, J.L., Holgado, M.N.F., and Morales, H.A., Energy Convers. Manag., 2013, vol. 74, pp. 332–343. https://doi.org/10.1016/j.enconman.2013.05.023

    Article  Google Scholar 

  33. Burchart-Korol, D., Jursova, S., Folega, P., Korol, J., Pustejovska, P., and Blaut, A., J. Clean. Prod., 2018, vol. 202, pp. 476–487. https://doi.org/10.1016/j.jclepro.2018.08.145

    Article  Google Scholar 

  34. Ahmadi, P. and Kjeang, E., Int. J. Hydrogen Energy, 2015, vol. 40, pp. 12905–12917. https://doi.org/10.1016/j.ijhydene.2015.07.147

    Article  CAS  Google Scholar 

  35. Ren, L., Zhou, S., and Ou, X., Energy, 2020, Vol. 209, p. 118482. https://doi.org/10.1016/j.energy.2020.118482

    Article  CAS  Google Scholar 

  36. Lee, D.-Y., Elgowainy, A., and Vijayagopal, R., Energy Policy, 2019, vol. 128, pp. 565–583. https://doi.org/10.1016/j.enpol.2019.01.021

    Article  Google Scholar 

  37. Correa, G., Munoz, P.M., and Rodriguez, C.R., Energy, 2019, vol. 187, p. 115906. https://doi.org/10.1016/j.energy.2019.115906

    Article  Google Scholar 

  38. Rosen, M.A., Energy, 2010, vol. 35, no. 2, pp. 1068–1076. https://doi.org/10.1016/j.energy.2009.06.018

    Article  CAS  Google Scholar 

  39. Lombardi, L., Tribioli, L., Cozzolino, R., and Bella, G., Int. J. Life Cycle Assess., 2017, vol. 22, pp. 1989–2006. https://doi.org/10.1007/s11367-017-1294-y

    Article  CAS  Google Scholar 

  40. Edinyi systemnyi operator edinoi energeticheskoi sistemy. Edinaya energeticheskaya sistema Rossii (United Systems Operator of the United Power System. United Power System of Russia). https://so-ups.ru/functioning/ees/ees-2020/.

  41. Ministerstvo energetiki Rossiiskoi Federatsii. Ob utverzhdenii skhemy i programmy razvitiya edinoi energeticheskoi sistemy Rossii na 2016–2022 gg. (Ministry of Energy of the Russian Federation. Approval of the Scheme and Program for the Development of the United Power System of Russia for the Years 2016–2022). https://minenergo.gov.ru/node/5021.

  42. Whittingham, M.S., Chem. Rev., 2004, vol. 104, pp. 4271–4301. https://doi.org/10.1021/cr020731c

    Article  CAS  PubMed  Google Scholar 

  43. Li, M., Lu, J., Chen, Z., and Amine, K., Adv. Mater., 2018, vol. 30, p. 1800561. https://doi.org/10.1002/adma.201800561

    Article  CAS  Google Scholar 

  44. Kim, T., Song, W., Son, D.-Y., Ono, L.K., and Qi, Y., J. Mater. Chem. A, 2019, vol. 7, pp. 2942–2964. https://doi.org/10.1039/c8ta10513h

    Article  CAS  Google Scholar 

  45. Yaroslavtsev, A.B., Kulova, T.L., and Skundin, A.M., Russ. Chem. Rev., 2015, vol. 84, no. 8, pp. 826–852. https://doi.org/10.1070/RCR4497 

    Article  CAS  Google Scholar 

  46. Ding, Y., Cano, Z.P., Yu, A., Lu, J., and Chen, Z., Electrochem. Energy Rev., 2019, vol. 2, pp. 1–28. https://doi.org/10.1007/s41918-018-0022-z

    Article  CAS  Google Scholar 

  47. Zhang, X., Peng, H., Wang, H., and Ouyang, M., IEEE Trans. Vehicular Technol., 2018, vol. 67, no. 2, pp. 956–965. https://doi.org/10.1109/TVT.2017.2749882

    Article  Google Scholar 

  48. Yi, T.-F., Xie, Y., Zhu, Y.-R., Zhu, R.-S., and Shen, H., J. Power Sources, 2013, vol. 222, pp. 448–454.

    Article  CAS  Google Scholar 

  49. Belharouak, I., Sun, Y.-K., Lu, W., and Amine, K., J. Electrochem. Soc., 2007, vol. 154, no. 12, pp. A1083–A1087. https://doi.org/10.1016/j.jpowsour.2012.09.020

    Article  CAS  Google Scholar 

  50. The Rechargeable Battery Market and Main Trends 2016–2025, p. 43. http://www.watersmark.com/wp-content/uploads/2017/09/Pillot_Christophe2016-2025.pdf.

  51. Toshiba. Electric Bus. https://www.global.toshiba/ww/products-solutions/battery/scib/application/ev-bus.html.

  52. Gulf Business. Abu Dhabi Unveils Fleet of Electric Buses. https://gulfbusiness.com/abu-dhabi-unveils-fleet-of-electric-buses/.

  53. Foothill Transit Agency Battery Electric Bus Progress Report Data Period Focus. 2020. NREL/PR-5400-76259. https://www.nrel.gov/docs/fy21osti/76259.pdf.

  54. Green Car Congr. Moscow Launches Its 500th Electric Bus; Largest Electric Bus Fleet in Europe. https://www.greencarcongress.com/2020/11/20201114-moscow.html.

  55. Wolff, S., Seidenfus, M., Gordon, K., Alvarez, S., Kalt, S., and Lienkamp, M., Sustainability, 2020, vol. 12 (13), p. 5396. https://doi.org/10.3390/su12135396

    Article  Google Scholar 

  56. Zhou, B., Wu, Y., Zhou, B., Wang, R., Ke, W., Zhang, S., and Hao, J., Energy, 2016, vol. 96, pp. 603–613. https://doi.org/10.1016/j.energy.2015.12.041

    Article  Google Scholar 

  57. Faria, R., Marques, P., Moura, P., Freire, F., Delgado, J., and de Almeida, A.T., Renew. Sustain. Energy Rev., 2013, vol. 24, pp. 271–287. https://doi.org/10.1016/j.rser.2013.03.063

    Article  Google Scholar 

  58. Dunn, J.B., Gaines, L., Kelly, J.C., James, C., and Gallagher, K.G., Energy Environ. Sci., 2015, vol. 8, pp. 158–168. https://doi.org/10.1039/C4EE03029J

    Article  CAS  Google Scholar 

  59. Zackrisson, M., Avellan, L., and Orlenius, J., J. Clean. Prod., 2010, vol. 18, no. 15, pp. 1517–1527. https://doi.org/10.1016/j.jclepro.2010.06.004

    Article  CAS  Google Scholar 

  60. Golroudbary, S., Calisaya-Azpilcueta, D., and Kraslawski, A., Procedia CIRP, 2019, vol. 80, pp. 316–321. https://doi.org/10.1016/j.procir.2019.01.003

    Article  Google Scholar 

  61. Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., and Weidema, B., Int. J. Life Cycle Assess., 2016, vol. 21, pp. 1218–1230. https://doi.org/10.1007/s11367-016-1087-8

    Article  Google Scholar 

  62. Argonne National Laboratory. GREET Model: The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model. 2019. https://greet.es.anl.gov/.

  63. Dai, Q., Dunn, J., Kelly, J.C., and Elgowainy, A., Update of Life Cycle Analysis of Lithium-Ion Batteries in the GREET Model. 2017. https://greet.es.anl.gov/publication-Li_battery_update_2017

  64. Kelly, J., Dai, Q., and Elgowainy, A., Vehicle Materials: Fuel Cell Vehicle Material Composition Update. 2016 // Argonne National Laboratory. https://greet.es.anl.gov/files/fcv-composition-2016.

  65. Ahmed, S., Nelson, P.A., Gallagher, K.G., Susarla, N., and Dees, D.W., J. Power Sources, 2017, vol. 342, pp. 733–740. https://doi.org/10.1016/j.jpowsour.2016.12.069

    Article  CAS  Google Scholar 

  66. European Platform on Life Cycle Assessment. https://eplca.jrc.ec.europa.eu/LCDN/datasetList.xhtml.

  67. Canete, V.I., Thunman, H., Hanarp, P., and Magnusson, I., Synthesizing LCA Reports on Fuels for Heavy Duty Trucks, F3 Report, 2018, vol. 12. https://f3centre.se/app/uploads/f3-21-17_Magnusson-et-al_final_180829.pdf.

  68. Range Sourced from JEC Well-to-Tank Appendix 4–Version 4a: Description, Results and Input Data per Pathway, from Well-to-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context, 2014. http://iet.jrc.ec.europa.eu/about-jec/downloads.

  69. Wolff, S., Fries, M., and Lienkamp, M., J. Ind. Ecol., 2019, vol. 24, no. 1, pp. 165–177. https://doi.org/10.1111/jiec.12937

    Article  Google Scholar 

  70. Barbir, F., Basile, A., and Veziroglu, T.N., Compendium of Hydrogen Energy: Hydrogen Enenrgy Conversion, Cambridge, UK: Woodhead, 2015.

    Google Scholar 

  71. Landinger, H., International perspectives for fuel cells for materials handling vehicles (MHVs), Proc. 10th Int. Colloquium Fuels–Conventional and Future Energy for Automobiles, Stuttgart, Germany, January 22, 2015.

  72. Mori, M., Jensterle, M., Mrzljak, T., and Drobnic, B., Int. J. Life Cycle Assess., 2014, vol. 19, pp. 1810–1822. https://doi.org/10.1007/s11367-014-0790-6

    Article  CAS  Google Scholar 

  73. Melideo, D., Cebolla, O.R., and Ronnefeld, W.E., Life Cycle Assessment of Hydrogen and Fuel Cell Technologies, EUR 29986 EN, Luxembourg: European Union, 2020, JRC116599. https://doi.org/10.2760/434747

  74. Franzitta, V., Curto, D., Milone, D., and Trapanese, M., Sustainability, 2017, vol. 9, no. 1, p. 106. https://doi.org/10.3390/su9010106

    Article  CAS  Google Scholar 

  75. Usui, T. and Hondo, H., J. Jpn. Inst. Energy, 2010, vol. 89, pp. 551–561.

    Article  CAS  Google Scholar 

  76. Update of Life Cycle Analysis of Lithium-Ion Batteries in the GREET Model. https://greet.es.anl.gov/publication-Li_battery_update_2017.

  77. Deliali, A., Chhan, D., Oliver, J., Sayess, R., Pollitt, K.J.G., and Christofa, E., Transport Rev., 2021, vol. 41, no. 2, pp. 164–191. https://doi.org/10.1080/01441647.2020.1800132

    Article  Google Scholar 

  78. JIVE D3.24/JIVE 2 D3.7 Best Practice Report. https://www.fueLCAllbuses.eu/sites/default/files/documents/Best_Practice_Report_January_2020__JIVE_D3.24_JIVE_2_D3.7.pdf.

  79. Shtang, A.A., Yaroslavtsev, M.V., Dedov, S.I., and Xiaogang, W., in 20 Int. Conf. of Young Specialists on Micro/Nanotechnologies and Electron Devices, EDM 2019, Erlagol, Altai Republic, 2019, pp. 705–710. https://doi.org/10.1109/EDM.2019.8823400

  80. Basma, H., Mansour, C., Haddad, M., Nemer, M., and Stabat, P., Energy, 2020, vol. 207, p. 118241. https://doi.org/10.1016/j.energy.2020.118241

    Article  Google Scholar 

  81. Electricity Storage and Renewables: Costs and Markets to 2030, Internal Renewable Agency (IRENA), 2017. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2017/Oct/IRENA_Electricity_Storage_Costs_2017.pdf.

  82. Martins, J. and Miles, J., Energy Policy, 2021, vol. 148, p. 111938. https://doi.org/10.1016/j.enpol.2020.111938

    Article  Google Scholar 

  83. DOE Hydrogen and Fuel Cells Program, Record #21001: Durability-Adjusted Fuel Cell System Cost, 2021. https://www.hydrogen.energy.gov/pdfs/21001-durability-adjusted-fcs-cost.pdf.

  84. Thompson, S.T., James, B.D., Huya-Kouadio, J.M., Houchins, C., DeSantis, D.A., Ahluwalia, R., Wilson, A.R., Kleen, G., and Papageorgopoulos, D., J. Power Sources, 2018, vol. 399, pp. 304–313. https://doi.org/10.1016/j.jpowsour.2018.07.100

    Article  CAS  Google Scholar 

  85. Manufacturing Cost Analysis of 100 and 250 kW Fuel Cell Systems for Primary Power and Combined Heat and Power Applications, US Department of Energy, 2017, pp. 40–41. https://www.energy.gov/sites/prod/files/2018/02/f49/fcto_battelle_mfg_cost_analysis_100_250kw_pp_chp_fc_systems_jan2017.pdf.

  86. Fueling the Future of Mobility Hydrogen and Fuel Cell Solutions for Transportation, Deliotte China. https://www2.deloitte.com/content/dam/Deloitte/cn/Documents/finance/deloitte-cn-fueling-the-future-of-mobility-en-200101.pdf.

  87. The Future of Hydrogen. Seizing Today’s Opportunities, International Energy Agency. https://www.iea.org/reports/the-future-of-hydrogen.

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.S. Terenchenko and Yu.A. Dobrovol’skii, development of the concept of the paper; A.V. Kozlov and A.S. Terenchenko, development of the methodical part of calculation studies; M.A. Gorin and A.S. Terenchenko, inventory analysis of the technical and environmental parameters of powertrains; A.N. Tikhonov, A.V. Porsin, and A.M. Kashin, inventory analysis of the economic parameters of fuels and powertrains; A.V. Kozlov, A.M. Kashin, and K.V. Milov, calculation studies; all the authors, analysis and discussion of the results of calculation studies; A.V. Kozlov and A.V. Porsin, writing of the text and preparation of figures.

Corresponding author

Correspondence to A. V. Kozlov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 6, pp. 784–804, January, 2021 https://doi.org/10.31857/S004446182106013X

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlov, A.V., Porsin, A.V., Dobrovol’skii, Y.A. et al. Life Cycle Assesment of Powertrains Based on a Battery, Hydrogen Fuel Cells, and Internal Combustion Engine for Urban Buses under the Conditions of Moscow Oblast. Russ J Appl Chem 94, 793–812 (2021). https://doi.org/10.1134/S1070427221060136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221060136

Keywords:

Navigation