Skip to main content
Log in

Optimization by Response Surface Methodology of the Adsorption of Anionic Dye on Superparamagnetic Clay/Maghemite Nanocomposite

  • Various Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Magnetic nanoparticles and clay minerals combine to form a class of advanced nanocomposites that would possess exceptional adsorption, magnetism, and stability. In this work, an environmentally friendly nanocomposite was successfully fabricated by functionalizing natural clay. Bentonite сlay/meghemite nanocomposite was synthesized by the co-precipitation method and used to Methyl Orange pollutant removal as a toxic anionic dye from aqueous solutions. Physical and structural characteristics of the synthesized adsorbent were assessed using different techniques including Fourier transform infrared spectrometer, scanning electron microscopy, vibrating sample magnetometry, and X-ray diffraction. The saturation magnetization of maghemite and bentonite/maghemite nanocomposite are 50.9 and 28.5 emu g–1, respectively. The average size of the synthesized maghemite nanoparticles calculated by the Scherer equation was 16.60 nm. Different kinetic and thermodynamic models and isotherms of the adsorption process were also investigated. The adsorption capacity became equilibrium after 120 min. The consistency of the adsorption process with the pseudo-second-order kinetic model was confirmed by studying its kinetic data. Investigating the equilibrium isotherm data at different temperatures showed better compatibility with the Freundlich model. The negative values of ΔG and positive values of ΔH obtained from adsorption thermodynamic study revealed that Methyl Orange adsorption from aqueous samples is spontaneous and endothermic. The optimal parameters for Methyl Orange removal by synthesized adsorbent were determined by MINITAB 17 under response surface methodology (RSM). The maximum adsorption capacity of dye adsorption of 56.79 mg g–1 was obtained under optimum conditions of pH = 4, adsorbent dose of 1 g L–1 and dye concentration of 90 mg L–1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Gupta, V.K. and Saleh, T.A., Env. Sci. & Pollution Res., 2013, vol. 20, no. 5, pp. 2828–2843. https://doi.org/10.1007/S11356-013-1524-1

    Article  CAS  Google Scholar 

  2. Paul, J., et al., Appl. Radiat. & Isot., 2011, vol. 69, no. 7, pp. 982–987. https://doi.org/10.1016/j.apradiso.2011.03.009

    Article  CAS  Google Scholar 

  3. Javanbakht, V., Alavi, S.A., and Zilouei, H., Water Sci. & Technol., 2014, vol. 69, no. 9, p. 1775. https://doi.org/10.2166/wst.2013.718

    Article  CAS  Google Scholar 

  4. Javanbakht, V. and Ghoreishi, S.M., Adsorption Science & Technology, 2017, vol. 35, nos. 1–2, pp. 241–260. https://doi.org/10.1177/0263617416674474

    Article  CAS  Google Scholar 

  5. Sabouri, M.R., Et Al., Process Safety and Environmental Protection, 2019, vol. 126, pp. 182–192. https://doi.org/10.1016/j.psep.2019.04.006

    Article  CAS  Google Scholar 

  6. Saravanan, R., et al., Colloid & Interface Science, 2015, vol. 452, pp. 126-133. https://doi.org/10.1016/j.jcis.2015.04.035

    Article  CAS  Google Scholar 

  7. Javanbakht, V., et al., Powder Technology, 2016, vol. 302, pp. 372-383. https://doi.org/10.1016/j.powtec.2016.08.069

    Article  CAS  Google Scholar 

  8. Al-Kdasi, A., et al., Global Nest, The Int. J, 2004, vol. 6, no. 3, pp. 222–230.

    Google Scholar 

  9. Chen, S., et al., Desalination, 2010, vol. 2521–3, pp. 149–156. https://doi.org/10.1016/j.desal.2009.10.010

    Article  CAS  Google Scholar 

  10. Ofomaja, A.E. and Ho, Y.-S., Bioresource Technology, 2008, vol. 99, no. 13, pp. 5411–5417. https://doi.org/10.1016/j.biortech.2007.11.018

    Article  CAS  PubMed  Google Scholar 

  11. Royer, B., et al., Hazardous Materials, 2009, vol. 164, nos. 2–3, pp. 1213–1222. https://doi.org/10.1016/j.jhazmat.2008.09.028

    Article  CAS  Google Scholar 

  12. Brookstein, D.S., Dermatologic Clinics, 2009, vol. 27, no. 3, pp. 309–322. https://doi.org/10.1016/j.det.2009.05.001

    Article  CAS  PubMed  Google Scholar 

  13. Carneiro, P.A., et al., Hazardous Materials, 2010, vol. 174, nos. 1–3, pp. 694–699. https://doi.org/10.1016/j.jhazmat.2009.09.106

    Article  CAS  Google Scholar 

  14. Mehrabi, M. and Javanbakht, V, Materials Science, Materials In Electronics, 2018, vol. 29, no. 12, pp. 9908–9919. https://doi.org/10.1007/S10854-018-9033-0

    Article  CAS  Google Scholar 

  15. Bayat, M., et al., International Journal of Biological Macromolecules, 2018, vol. 116, pp. 607–619. https://doi.org/10.1016/J.Ijbiomac.2018.05.012

    Article  CAS  PubMed  Google Scholar 

  16. Erfani, M. and Javanbakht, V., International Journal of Biological Macromolecules, 2018, vol. 114, pp. 244–255. https://doi.org/10.1016/J.Ijbiomac.2018.03.003

    Article  CAS  PubMed  Google Scholar 

  17. Mirzaei, S. and Javanbakht, V., International Journal of Biological Macromolecules, 2019, vol. 134, pp. 1187–1204. https://doi.org/10.1016/j.ijbiomac.2019.05.119

    Article  CAS  PubMed  Google Scholar 

  18. Haque, E., et al., Hazardous Materials, 2011, vol. 185, no. 1, pp. 507–511. https://doi.org/10.1016/j.jhazmat.2010.09.035

    Article  CAS  Google Scholar 

  19. Vaez, Z. and Javanbakht, V., Photochemistry & Photobiology A, Chemistry, 2019, vol. 388, p. 112064. https://doi.org/10.1016/j.jphotochem.2019.112064

    Article  CAS  Google Scholar 

  20. Chen, Z.-X., et al., Colloid and Interface Science, 2011, vol. 363, no. 2, pp. 601–607. https://doi.org/10.1016/j.jcis.2011.07.057

    Article  CAS  Google Scholar 

  21. Azizian, S., et al., Chemical Engineering, 2009, vol. 146, no. 1, pp. 36–41. https://doi.org/10.1016/j.cej.2008.05.024

    Article  CAS  Google Scholar 

  22. Rahpeima, S., et al., Inorganic and Organometallic Polymers and Materials, 2018, vol. 28, no. 1, pp. 195–211. https://doi.org/10.1007/S10904-017-0688-4

    Article  CAS  Google Scholar 

  23. Demirbas, E., et al., Bioresource Technology, 2008, vol. 99, no. 13, pp. 5368–5373. https://doi.org/10.1016/j.biortech.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  24. Keyvani, F., et al., Solid State Sciences, 2018, Vol. 83, pp. 31–42. https://doi.org/10.1016/j.solidstatesciences.2018.06.007

    Article  CAS  Google Scholar 

  25. Alver, E. and Metin, A.Ü. Chemical Engineering, 2012, vol. 200, pp. 59–67. https://doi.org/10.1016/j.cej.2012.06.038

    Article  CAS  Google Scholar 

  26. Wang, X.S., et al., Hazardous Materials, 2008. Vol. 157, nos. 2–3, pp. 374–385. https://doi.org/10.1016/j.jhazmat.2008.01.004

    Article  CAS  Google Scholar 

  27. Rosa, S., et al., Hazardous Materials, 2008, vol. 155, nos. 1–2, pp. 253–260. https://doi.org/10.1016/j.jhazmat.2007.11.059

    Article  CAS  Google Scholar 

  28. Tanabtabzadeh, M.S., et al., Waste and Biomass Valorization, 2019, vol. 10, no. 3, pp. 641–653. https://doi.org/10.1007/S12649-017-0086-8

    Article  CAS  Google Scholar 

  29. Liu, Y., et al., Chemical Engineering, 2013, vol. 218, pp. 46–54. https://doi.org/10.1016/j.cej.2012.12.027

    Article  CAS  Google Scholar 

  30. Javanbakht, V., et al., Protection of Metals and Physical Chemistry of Surfaces, 2017, vol. 53, no. 4, pp. 693–702. https://doi.org/10.1134/S2070205117040086

    Article  CAS  Google Scholar 

  31. Javanbakht, V., et al., Chemical and Pharmaceutical Research, 2016, vol. 8, no. 4, pp. 846–852.

    CAS  Google Scholar 

  32. Demirbas, A., Hazardous Materials, 2009, vol. 167, no. 1, pp. 1–9. https://doi.org/10.1016/j.jhazmat.2008.12.114

    Article  CAS  Google Scholar 

  33. Mallakpour, S. and Hatami, M., Designed Monomers and Polymers, 2011, vol. 14, no. 5, pp. 461–473. https://doi.org/10.1163/138577211X587654

    Article  CAS  Google Scholar 

  34. Oliveira, L.C., et al., Carbon, 2002, vol. 40, no. 12, pp. 2177–2183. https://doi.org/10.1016/S0008-62230200076-3

    Article  CAS  Google Scholar 

  35. Sareban, Z. and Javanbakht, V., Korean Journal of Chemical Engineering, 2017, vol. 34, no. 11, pp. 2886–2900. https://doi.org/10.1007/S11814-017-0216-9

    Article  CAS  Google Scholar 

  36. Aeenjan, F. and Javanbakht, V., Research On Chemical Intermediates, 2018, vol. 44, no. 3, pp. 1459–1483. https://doi.org/10.1007/S11164-017-3179-X

    Article  CAS  Google Scholar 

  37. Gnanaprakash, G., et al., Materials Chemistry and Physics, 2007, vol. 103, no. 1, pp. 168–175. https://doi.org/10.1016/j.matchemphys.2007.02.011

    Article  CAS  Google Scholar 

  38. Lu, A.H., et al., Angewandte Chemie International Edition, 2007, vol. 46, no. 8, pp. 1222–1244. https://doi.org/10.1002/anie.200602866

    Article  CAS  PubMed  Google Scholar 

  39. Chen, L., et al., Applied Clay Science, 2016, vol. 127, pp. 143–163. https://doi.org/10.1016/j.clay.2016.04.009

    Article  CAS  Google Scholar 

  40. Rechendorff, K., et al., Langmuir, 2006, vol. 22, no. 26, pp. 10885–10888. https://doi.org/10.1021/la0621923

    Article  CAS  PubMed  Google Scholar 

  41. Özcan, A.S. and Özcan, A., Colloid and Interface Science, 2004, vol. 276, no. 1, pp. 39–46. https://doi.org/10.1016/j.jcis.2004.03.043

    Article  CAS  Google Scholar 

  42. Darezereshki, E., et al., Materials Science In Semiconductor Processing, 2013, vol. 16, no. 1, pp. 221–225. https://doi.org/10.1016/j.mssp.2012.08.007

    Article  CAS  Google Scholar 

  43. Tan, Y., et al., Chemical Engineering, 2012, vol. 191, pp. 104–111. https://doi.org/10.1016/j.cej.2012.02.075

    Article  CAS  Google Scholar 

  44. Xie, M., et al., Alloys and Compounds, 2015, vol. 647, pp. 892–905. https://doi.org/10.1016/j.jallcom.2015.06.065

    Article  CAS  Google Scholar 

  45. Zhao, G., et al., The Open Colloid Science, 2010, vol. 4, p. 1. https://doi.org/10.2174/1876530001104010019

    Article  Google Scholar 

  46. Foo, K. and Hameed, B., Chemical Engineering, 2010, vol. 156, no. 1, pp. 2–10. https://doi.org/10.1016/j.cej.2009.09.013

    Article  CAS  Google Scholar 

  47. Gautam, R.K., et al., Molecular Liquids, 2015, vol. 204, pp. 60–69. https://doi.org/10.1016/J.Molliq.2015.01.038

    Article  CAS  Google Scholar 

  48. Bayramoğlu, G. and Arica, M.Y., Chemical Engineering, 2008, vol. 139, no. 1, pp. 20–28. https://doi.org/10.1016/j.cej.2007.07.068

    Article  CAS  Google Scholar 

  49. Ma, J., et al., ACS Applied Materials & Interfaces, 2012, vol. 4, no. 11, pp. 5749–5760. https://doi.org/10.1021/am301053m

    Article  CAS  Google Scholar 

  50. Hao, Y.-M., et al., Hazardous Materials, 2010, vol. 184, no. 1, pp. 392–399. https://doi.org/10.1016/j.jhazmat.2010.08.048

    Article  CAS  Google Scholar 

  51. Chang, Y.C. and Chen, D.H., Macromolecular Bioscience, 2005, vol. 5, no. 3, pp. 254–261. https://doi.org/10.1002/Mabi.200400153

    Article  CAS  PubMed  Google Scholar 

  52. Aksu, Z. and Gönen, F., Separation & Purification Technology, 2006, vol. 49, no. 3, pp. 205–216. https://doi.org/10.1016/j.seppur.2005.09.014

    Article  CAS  Google Scholar 

  53. Can, M.Y., et al., Bioresource Technology, 2006, vol. 97, no. 14, pp. 1761–1765. https://doi.org/10.1016/j.biortech.2005.07.017

    Article  CAS  PubMed  Google Scholar 

  54. Ghorbani, F., et al., Chemical Engineering, 2008, vol. 145, no. 2, pp. 267–275. https://doi.org/10.1016/j.cej.2008.04.028

    Article  CAS  Google Scholar 

  55. Ahmed, M., et al., Materials Science & Engineering, B, 2013, vol. 178, no. 10, pp. 744–751. https://doi.org/10.1016/j.mseb.2013.03.011

    Article  CAS  Google Scholar 

  56. Dinu, M.V. and Dragan, E.S., Chemical Engineering, 2010, vol. 160, no. 1, pp. 157–163. https://doi.org/10.1016/j.cej.2010.03.029

    Article  CAS  Google Scholar 

  57. Wang, L. and Wang, A., Bioresource Technology, 2008, vol. 99, no. 5, pp. 1403–1408. https://doi.org/10.1016/j.biortech.2007.01.063

    Article  CAS  PubMed  Google Scholar 

  58. Zhu, H., et al., Applied Surface Science, 2011, vol. 258, no. 4, pp. 1337–1344. https://doi.org/10.1016/j.apsusc.2011.09.045

    Article  CAS  Google Scholar 

  59. Kamaru, A.A., et al., Desalination & Water Treatment, 2016, vol. 57, no. 40, pp. 18836–18850. https://doi.org/10.1080/19443994.2015.1095122

    Article  CAS  Google Scholar 

  60. Shariati-Rad, M., et al., International Nano Letters, 2014, vol. 4, no. 4, pp. 91–101. https://doi.org/10.1007/S40089-014-0124-5

    Article  CAS  Google Scholar 

  61. Fan, J., et al., Colloid and Interface Science, 2016, vol. 470, pp. 229–236. https://doi.org/10.1016/j.jcis.2016.02.045

    Article  CAS  Google Scholar 

  62. Yang, H.-C., et al., Colloid and Interface Science, 2017, vol. 505, pp. 67–78. https://doi.org/10.1016/j.jcis.2017.05.075

    Article  CAS  Google Scholar 

  63. Karthika, J. and Vishalakshi, B., International Journal of Biological Macromolecules, 2015, vol. 81, pp. 648–655. https://doi.org/10.1016/j.ijbiomac.2015.08.064

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENT

Financial support of this work by ACECR Institute of Higher Education (Isfahan Branch) is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Javanbakht.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, S., Rahpeima, S., Esmaili, J. et al. Optimization by Response Surface Methodology of the Adsorption of Anionic Dye on Superparamagnetic Clay/Maghemite Nanocomposite. Russ J Appl Chem 94, 533–548 (2021). https://doi.org/10.1134/S1070427221040145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221040145

Keywords:

Navigation