Skip to main content
Log in

Evolution of the Structure of Aluminosilicate Particles in the Course of Formation of Nanocomposite Coatings Based on Alkyd Oligomers

  • Composite Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Various steps of the formation of nanocomposite coatings using organic-soluble film-forming agents are accompanied by changes in the structure of the aluminosilicate nanofiller under the action of various factors. Taking these factors into account is necessary for the development of coatings of preset structure with optimum properties. Swelling of various organoclays in pure and technical solvents and in a solution of an alkyd oligomeric film-forming agent was studied. The stability of organoclay dispersions in these media, the nanostructure of organoclay tactoids in dispersions, and the nanostructure of films of cured composites based on the alkyd oligomer were correlated. Factors favoring the swelling of organoclays in a film-forming agent solution and the formation of an intercalated nanocomposite were revealed. The effect of water vapor on the nanofiller structure in the composite film was characterized to evaluate the moisture resistance of the composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Nasir, A., Kausar, A., and Younus, A., Polym.–Plast. Technol., 2015, vol. 54, no. 4, pp. 325–341. https://doi.org/10.1080/03602559.2014.958780

    Article  CAS  Google Scholar 

  2. Šupová, M., Gražyna, S.M., and Karla, B., Sci. Adv. Mater., 2011, vol. 3, no. 1, pp. 1–25. https://doi.org/10.1166/sam.2011.1136

    Article  CAS  Google Scholar 

  3. Gerasin, V.A., Antipov, E.M., Karbushev, V.V., Kulichikhin, V.G., Karpacheva, G.P., Talroze, R.V., and Kudryavtsev, Y.V., Russ. Chem. Rev., 2013, vol. 82, no. 4, pp. 303–332. https://doi.org/10.1070/RC2013v082n04ABEH004322 

    Article  Google Scholar 

  4. Theng, B.K.G., Formation and Properties of Clay–Polymer Complexes, Amsterdam: Elsevier, 2012, pp. 201–242.

    Article  Google Scholar 

  5. Khar’kova, E.M., Mendeleev, D.I., Aulov, V.A., Shklyaruk, B.F., Gerasin, V.A., Piryazev, A.A., and Antipov, A. E., Polym. Sci. Ser. A, 2014, vol. 56, no. 1, pp. 72–82. https://doi.org/10.1134/S0965545X14010052 

    Article  Google Scholar 

  6. Choudalakis, G. and Gotsis, A.D., Eur. Polym. J., 2009, vol. 45, no. 4, pp. 967–984. https://doi.org/10.1016/j.eurpolymj.2009.01.027

    Article  CAS  Google Scholar 

  7. Kurenkov, V.V., Gerasin, V.A., Korolev, Yu.M., Piryazev, A.A., Mendeleev, D.I., and D’yachuk, S.V., Plast. Massy, 2015, nos. 7–8, pp. 53–60.

    Google Scholar 

  8. Heidarian, M. and Shishesaz, M.R., J. Appl. Polym. Sci., 2012, vol. 126, no. 6, pp. 2035–2048. https://doi.org/10.1002/app.34077

    Article  CAS  Google Scholar 

  9. Verma, G., Kaushik, A., and Ghosh, A.K., Prog. Org. Coat., 2013, vol. 76, no. 7, pp. 1046–1056. https://doi.org/10.1016/j.porgcoat.2013.02.018

    Article  CAS  Google Scholar 

  10. Malin, F., Znoj, B., Šegedin, U., Skale, S., Golob, J., and Venturini, P., Prog. Org. Coat., 2013, vol. 76, no. 10, pp. 1471–1476. https://doi.org/10.1016/j.porgcoat.2013.06.004

    Article  CAS  Google Scholar 

  11. Kowalczyk, K. and Spychaj, T., Prog. Org. Coat., 2008, vol. 62, no. 4, pp. 425–429. https://doi.org/10.1016/j.porgcoat.2008.03.001

    Article  CAS  Google Scholar 

  12. Salles, F., Bildstein, O., Douillard, J.M., Jullien, M., Raynal, J., and Van Damme, H., Langmuir, 2010, vol. 26, no. 7, pp. 5028–5037. https://doi.org/10.1021/la1002868

    Article  CAS  PubMed  Google Scholar 

  13. Ferrage, E., Lanson, B., Sakharov, B.A., and Drits, V.A., Am. Mineral., 2005, vol. 90, nos. 8–9, pp. 1358–1374. https://doi.org/10.2138/am.2005.1776

    Article  CAS  Google Scholar 

  14. Burgentzlé, D., Duchet, J., Gérard, J.F., Jupin, A., and Fillon, B., J. Colloid Interface Sci., 2004, vol. 278, no. 1, pp. 26–39. https://doi.org/10.1016/j.jcis.2004.05.015

    Article  CAS  PubMed  Google Scholar 

  15. Bal, A., Güçlü, G., Acar, I., and İyim, T.B., Prog. Org. Coat., 2010, vol. 68, no. 4, pp. 363–365. https://doi.org/10.1016/j.porgcoat.2010.03.006

    Article  CAS  Google Scholar 

  16. Dhirde, P.G., Chada, V.G., Mallik, B.P., and Moitra, N., Polym. Compos., 2018, vol. 39, no. 8, pp. 2922–2931. https://doi.org/10.1002/pc.24291

    Article  CAS  Google Scholar 

  17. Li, J., Ecco, L., Fedel, M., Ermini, V., Delmas, G., and Pan, J., Prog. Org. Coat., 2015, vol. 87, pp. 179–188. https://doi.org/10.1016/j.porgcoat.2015.06.003

    Article  CAS  Google Scholar 

  18. Kurenkov, V.V. and Gerasin, V.A., Khim. Prom–st. Segodnya, 2018, no. 1, pp. 4–11.

    Google Scholar 

  19. Gerasin, V.A., Bakhov, F.N., Merekalova, N.D., Korolev, Y.M., Fischer, H.R., and Antipov, E.M., Polym. Sci., Ser. A, 2005, vol. 47, no. 9, pp. 954–967.

    Google Scholar 

  20. Ho, D.L. and Glinka, C.J., Chem. Mater., 2003, vol. 15, no. 6, pp. 1309–1312. https://doi.org/10.1021/cm0217194

    Article  CAS  Google Scholar 

  21. Moraru, V.N., Appl. Clay Sci., 2001, vol. 19, no. 1, pp. 11–26. https://doi.org/10.1016/S0169-1317(01)00053-9

    Article  CAS  Google Scholar 

  22. Ho, D.L., Briber, R.M., and Glinka, C.J., Chem. Mater., 2001, vol. 13, no. 5, pp. 1923–1931. https://doi.org/10.1021/cm0008617

    Article  CAS  Google Scholar 

  23. Connolly, J., van Duijneveldt, J.S., Klein, S., Pizzey, C., and Richardson, R.M., Langmuir, 2006, vol. 22, no. 15, pp. 6531–6538. https://doi.org/10.1021/la0609219

    Article  CAS  PubMed  Google Scholar 

  24. Hu, Z., He, G., Liu, Y., Dong, C., Wu, X., and Zhao, W., Appl. Clay Sci., 2013, vol. 75, pp. 134–140. https://doi.org/10.1016/j.clay.2013.03.004

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out within the State Program of TIPS RAS (Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kurenkov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 4, pp. 496–506, January, 2021 https://doi.org/10.31857/S0044461821040095

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurenkov, V.V., Piryazev, A.A. & Gerasin, V.A. Evolution of the Structure of Aluminosilicate Particles in the Course of Formation of Nanocomposite Coatings Based on Alkyd Oligomers. Russ J Appl Chem 94, 491–500 (2021). https://doi.org/10.1134/S1070427221040091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221040091

Keywords:

Navigation