Skip to main content
Log in

Effect of CTAB on the Oxidation of Furfural to Maleic Acid over Hierarchical CoAPO-5 Catalysts

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

A series of hierarchical CoAPO-5 molecular sieves was hydrothermally synthesized using cetyltrimethylammonium bromide (CTAB) as the template. The structural properties of CoAPO-5 molecular sieves with different amount of CTAB, including AFI-0.10, AFI-0.25, AFI-0.35, AFI-0.45 and AFI-0.55 were all characterized by XRD, SEM, N2 adsorption-desorption and NH3-TPD. The catalytic performance of as-prepared CoAPO-5 molecular sieves for the oxidation of furfural to maleic acid was investigated. Research results indicated that the structure characteristics as well as the catalytic performances of CoAPO-5 molecular sieves were strongly affected by CTAB amount. Among those hierarchical CoAPO-5 catalysts, AFI-0.45 sample exhibited highest maleic acid yield of 85.9% at 60℃ after 3 h reaction. In addition, the stability of AFI-0.45 was proved persistent for subsequent cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Scheme 1.

Similar content being viewed by others

REFERENCES

  1. Shi, S., Guo, H., and Yin, G., Catal. Commun., 2011, vol. 12, no. 8, pp. 731–733. https://doi.org/10.1016/j.catcom.2010.12.033

    Article  CAS  Google Scholar 

  2. Alonso-Fagúndez, N., Ojeda, M., Mariscal, R., Fierro, J.L.G., and Granados, M.L., J. Catal., 2017, vol. 348, pp. 265–275. https://doi.org/10.1016/j.jcat.2016.12.005

    Article  CAS  Google Scholar 

  3. Soták, T., Hronec, M., Gál, M., Dobročka, E., and Škriniarová, J., Catal Lett., 2017, vol. 147, pp. 2714–2723. https://doi.org/10.1007/s10562-017-2191-5

    Article  CAS  Google Scholar 

  4. Guo, H., and Yin, G., J. Phys. Chem. C, 2011, vol. 115, no. 35, pp. 17516–17522. https://doi.org/10.1021/jp2054712

    Article  CAS  Google Scholar 

  5. Xiang, X., Zhang, B., Ding, G., Cui, J., Zheng, H., and Zhu, Y., Catal. Commun., 2016, vol. 86, pp. 41–45. https://doi.org/10.1016/j.catcom.2016.08.013

    Article  CAS  Google Scholar 

  6. Lan, J., Lin, J., Chen, Z., and Yin, G., ACS Catal., 2015, vol. 5, no. 4, pp. 2035–2041. https://doi.org/10.1021/cs501776n

    Article  CAS  Google Scholar 

  7. Xie, Y., Huang, Y., Wu, C., Yuan, W., Xia, Y., Liu, X., and Wang, H., Mol. Catal., 2018, vol. 452, pp. 20–27. https://doi.org/10.1016/j.mcat.2018.03.018

    Article  CAS  Google Scholar 

  8. Pinault, N., and Bruce, D.W., Coordin. Chem. Rev., 2003, vol. 241, pp. 1–25. https://doi.org/10.1016/S0010-8545(02)00306-5

    Article  CAS  Google Scholar 

  9. Alonso-Fagúndez, N., Arias, P.L., Fierro, J. L. G., Mariscal, R., and Granados, M.L., RSC Adv., 2014, vol. 4, no. 98, pp. 54960–54972. https://doi.org/10.1039/C4RA11563E

    Article  CAS  Google Scholar 

  10. Naydenov, V., Tosheva, L., Antzutkin, O.N., and Sterte, J., Micropor. Mesopor. Mater., 2004, vol. 78, pp. 181–188. https://doi.org/10.1016/j.micromeso.2004.10.008

    Article  CAS  Google Scholar 

  11. Zhao, D., Luan, Z., and Kevan, L., Chem. Commun., 1997, vol. 11, pp. 1009–1010. https://doi.org/10.1039/A700965H

    Article  Google Scholar 

  12. Li, X., Sun, M., Rooke, J.C., Chen, L., and Su, B., Chinese J. Catal., 2013, vol. 34, no. 1, pp. 22–47. https://doi.org/10.1016/S1872-2067(11)60507-X

    Article  CAS  Google Scholar 

  13. Pérez-Ramírez, J., Christensen, C., Egeblad, K., Christensen, C., and Groen, J., Chem. Soc. Rev., 2008, vol. 37, no. 11, pp. 2530–2542. https://doi.org/10.1039/B809030K

    Article  PubMed  Google Scholar 

  14. Maekawa, H., Saha, S.K., Mulla, S.A.R., Komura, K., and Sugi, Y., J. Mol. Catal. A Chem., 2007, vol. 263, pp. 238–246. https://doi.org/10.1016/j.molcata.2006.08.078

    Article  CAS  Google Scholar 

  15. Zhou, L., Lu, T., Xu, J., Chen, M., Zhang, C., Chen, C., and Xu, J., Micropor. Mesopor. Mater., 2012, vol. 161, pp. 76–83. https://doi.org/10.1016/j.micromeso.2012.04.058

    Article  CAS  Google Scholar 

  16. Zhao, X., Sun, Z., Zhuб Z., Li, A., Li, G., and Wang, X., Catal. Lett., 2013, vol. 143, no. 7, pp. 657–665. https://doi.org/10.1007/s10562-013-1027-1

    Article  CAS  Google Scholar 

  17. Zhang, R., Qin, Z., Dong, M., Wang, G., and Wang, J., Catal. Today, 2005, vol. 110, pp. 351–356. https://doi.org/10.1016/j.cattod.2005.09.033

    Article  CAS  Google Scholar 

  18. Sasidharan, M., Kiyozumi, Y., and Bhaumik, A., Catal. Sci. Technol., 2011, vol. 1, no. 2, pp. 255–259. https://doi.org/10.1039/C0CY00041H

    Article  CAS  Google Scholar 

  19. Wei, X.F., Lia, L.W., Feng, H.G., Gong, J.B., Jiang, K., and Xue, S.L., Ceram. Int., 2020, vol. 46, no. 1, pp. 1026–1032. https://doi.org/10.1016/j.ceramint.2019.09.067

    Article  CAS  Google Scholar 

  20. Jiao, W.Q., Ding, J., Shi, Z.B., Liang, X.M., Tang, Y., and He, M., Micropor. Mesopor. Mater., 2016, vol. 228, pp. 237–247. https://doi.org/10.1016/j.micromeso.2016.03.045

    Article  CAS  Google Scholar 

  21. Zhu, Y., Hua, Z., Zhou, X., Song, Y., Gong, Y., Zhou, J., Zhao, J., and Shi, J., RSC Adv., 2013, vol. 3, no. 13, pp. 4193–4198. https://doi.org/10.1039/C3RA23276J

    Article  CAS  Google Scholar 

  22. Wang, X., Chen, H., Meng, F., Gao, F., Sun, C., Sun, L., and Wang, Y., Micropor. Mesopor. Mater., 2017, vol. 243, pp. 271–290. https://doi.org/10.1016/j.micromeso.2017.02.054

    Article  CAS  Google Scholar 

  23. Sun, L., Wang, Y., Chen, H., Sun, C., Meng, F., Gao, F., and Wang, X., Catal. Today, 2018, vol. 316, pp. 91–98. https://doi.org/10.1016/j.cattod.2018.01.015

    Article  CAS  Google Scholar 

  24. Jiang, Y., Wang, Y., Zhao, W., Huang, J., Zhao, Y., Yang, G., Lei, Y., and Chu, R., J. Taiwan Inst. Chem. Eng., 2016, vol. 61, pp. 234–240. https://doi.org/10.1016/j.jtice.2015.12.017

    Article  CAS  Google Scholar 

  25. Liu, S. and Chao, Z., J. Wuhan Univ. Technol. Mater. Sci. Ed., 2012, vol. 27, pp. 337–345. https://doi.org/10.1007/s11595-012-0463-x

    Article  CAS  Google Scholar 

  26. Li, H., Zhou, X., Di, Y., Zhang, J., and Zhang, Y., Micropor. Mesopor. Mater., 2018, vol. 271, pp. 146–155. https://doi.org/10.1016/j.micromeso.2018.05.039

    Article  CAS  Google Scholar 

  27. Blin, J. L., Otjacques, C., Herrier, G., and Su, B., Int. J. Inorg. Mater., 2001, vol. 3, no. 1, pp. 75–86. https://doi.org/10.1016/S1466-6049(00)00043-X

    Article  CAS  Google Scholar 

  28. Perego, C., and Millini, R., Chem. Soc. Rev., 2013, vol. 42, pp. 3956–3976. https://doi.org/10.1039/C2CS35244C

    Article  CAS  PubMed  Google Scholar 

  29. Li, D., Yao, J., and Wang, H., Prog. Nat. Sci., 2012, vol. 22, no. 6, pp. 684–692. https://doi.org/10.1016/j.pnsc.2012.11.003

    Article  Google Scholar 

  30. Zhang, W., Ming, W., Hu, S., Qin, B., Ma, J., and Li, R., Materials, 2018, vol. 11, no. 5, pp. 651–662. https://doi.org/10.3390/ma11050651

    Article  CAS  PubMed Central  Google Scholar 

  31. Llombart, P., Palafox, M.A., MacDowell, L.G., and Noya, E.G., Colloids Surf. A, 2019, vol. 580, pp. 123730–123739. https://doi.org/10.1016/j.colsurfa.2019.123730

    Article  CAS  Google Scholar 

  32. Gianotti, E., Oliveira, E.C., Dellarocca, V., Coluccia, S., Pastore, H.O., and Marchese, L., Stud. Surf. Sci. Catal., 2002, vol. 141, pp. 417–422. https://doi.org/10.1016/S0167-2991(02)80570-5

    Article  CAS  Google Scholar 

  33. Huang, Y., Wu, C., Yuan, W., Xia, Y., Liu, X., Yang, H., and Wang, H., J. Chin. Chem. Soc., 2017, vol. 64, no. 7, pp. 786–794. https://doi.org/10.1002/jccs.201700004

    Article  CAS  Google Scholar 

  34. Masoume, R., Chermahini, A.N., Dabbagh, H.A., Saraji, M., and Shahvar, A., J. Environ. Chem. Eng., 2019, vol. 7, no. 1, pp. 102855. https://doi.org/10.1016/j.jece.2018.102855

    Article  CAS  Google Scholar 

  35. Rodenas, Y., Fierro, J.L.G., Mariscal, R., Retuerto, M., and Granados, M.L., Top. Catal., 2019, vol. 62, pp. 560–569. https://doi.org/10.1007/s11244-019-01149-2

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foundation of China (21706017) and Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology (BM2012110), a Project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Shao.

Ethics declarations

The authors declare that they have no conflicts of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, L., Sun, X., Wang, J. et al. Effect of CTAB on the Oxidation of Furfural to Maleic Acid over Hierarchical CoAPO-5 Catalysts. Russ J Appl Chem 94, 237–244 (2021). https://doi.org/10.1134/S1070427221020142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221020142

Keywords:

Navigation