Skip to main content
Log in

Silver Nanocomposites Based on Copolymers N,N-Dialyl-Nʹ-acylhydrazines with Acrylic Monomers

  • Macromolecular Compounds and Polymeric Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Copolymers of N,N-diallyl-Nʹ-acetylhydrazine and N,N-diallyl-Nʹ-benzoylhydrazine with acrylic acid, acrylonitrile, and acrylamide were synthesized by radical copolymerization in the presence of a radical initiator azobisisobutyronitrile. The borohydride method was used to produce new polymer nanocomposites containing silver nanoparticles 31–55 nm in size, stabilized by synthesized copolymers of N,N-diallyl-Nʹ-acylhydrazines. The presence of heteroatomic fragments and functional groups (carboxyl, amide, nitrile, acetyl, benzoyl, hydrazine) in the polymer chain promotes specific interaction with silver particles, regulating the particle size at the nanoscale and ensuring their uniform distribution in the polymer matrix. Structural features of nanocomposites were investigated using UV, IR, NMR spectroscopy and scanning electron microscopy. The produced nanocomposites exhibit cytotoxic activity against MS melanoma cells and RD rhabdomyosarcoma cells and are promising as new-generation drugs intended for the treatment of cancerous tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Silver Nanomaterials and Their Polymer Nanocomposites, Karak, N., Ed., Amsterdam: Elsevier, 2019. https://doi.org/10.1016/B978-0-12-814615-6.00002-3

    Book  Google Scholar 

  2. Sustainable Polymer Composites and Nanocomposites. Ch. Impact of Nanoparticle Shape, Size, and Properties of Silver Nanocomposites and Their Applications, Inamuddin, S., Thomas, R., Mishra, Kumar, and Asiri, A.M., Eds., New York: Springer, 2019. https://doi.org/10.1007/978-3-030-05399-4_37

    Book  Google Scholar 

  3. Krutyakov, Yu.A., Kudrinskiy, A.A., Olenin, A.Yu., and Lisichkin, G.V., Russ. Chem. Rev., 2008, vol. 77, no. 3, pp. 233–257. https://doi.org/10.1070/RC2008v077n03ABEH003751

    Article  CAS  Google Scholar 

  4. Vegera, A.V., Zimon, A.D., Russ. J. Appl. Chem., 2006, vol. 79, no. 9, pp. 1403–1406. https://doi.org/10.1134/S1070427206090023 

    Article  CAS  Google Scholar 

  5. Gusev, V.Yu., Radushev, A.V., Tolstikov, A.G., Vorob’eva, A.I., Kolesov, S.V., and Muslukhov, R.R., Russ. Chem. Bull., 2003, no. 12, pp. 2750–2751. https://doi.org/10.1023/B:RUCB.0000019896.10849.fd 

    Article  Google Scholar 

  6. Finemann, M. and Ross, S.D., J. Polym. Sci., 1950, vol. 5, pp. 259–262. https://doi.org/10.1002/pol.1950.120050210

    Article  Google Scholar 

  7. Kelen, T. and Tüdős, F., J. Macromol. Sci., Chem., 1975, vol. 9, no. 1, pp. 1–27. https://doi.org/10.1080/00222337508068644

    Article  Google Scholar 

  8. Scudiero, D.A., Shoemaker, R.H., Paull, K.D., Monks, A., Tierney, S., Notziger, T.H., Currens, M.T., Seniff, D., and Boyd, M.K., Cancer Res., 1988, vol. 48, pp. 4827–4833.

    CAS  PubMed  Google Scholar 

  9. Vorobʹeva, A.I., Gorbunova, M.N., Gusev, V.Y., Muslukhov, R.R., Kolesov, S.V., Tolstikov, A.G., and Monakov, Yu.B., Russ. J. Appl. Chem., 2004, vol. 77, no. 7, pp. 1160–1164. https://doi.org/10.1023/B:RJAC.0000044167.00715.3b 

    Article  Google Scholar 

  10. Karpov, S.V. and Slabko, V.V., Opticheskie i fotofizicheskie svoistva fraktal'no-strukturirovannykh zolei metallov (Optical and Photophysical Properties of Fractal-Structured Metal Sols), Novosibirsk: Izd. SB RAS, 2003.

    Google Scholar 

  11. Ostad, S.N., Dehnad, S., Nazari, Z.E., Fini, Sh.T., Mokhtari, N., Shakibaie, M., and Shahverdi, A.R., Avicenna J. Med. Biotechnol., 2010, vol. 2, no. 4, pp. 187–196.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ananyan, M.A., Demchenko, A.G., Sadykova, V.S., Lyundup, A.V., Gromovykh, T.I., Feldman, N.B., and Lutsenko, S.V., Nanotechnologies in Russia, 2019, vol. 14, pp. 273–279. https://doi.org/10.21517/1992-7223-2019-5-6-91-98 

    Article  CAS  Google Scholar 

  13. Mohanta, Y.K., Panda, S.K., Jayabalan, R., Sharma, N., Bastia, A.K., and Mohanta, T.K., Frontiers Mol. Biosci., 2017, vol. 4, pp. 14/1–14/9. https://doi.org/10.3389/fmolb.2017.00014

    Article  CAS  Google Scholar 

  14. Wei, L., Lu, J., Xu, H., Patel, A., Chen, Z.S., and Chen, G., Drug. Discov. Today, 2015, vol. 20, pp. 595–601. https://doi.org/10.1016/j.drudis.2014.11.014

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, T., Wang, L., Chen, Q., and Chen, Ch., Yonsei Med. J., 2014, vol. 55, pp. 283–291. https://doi.org/10.3349/ymj.2014.55.2.283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Goodman, A.M., Cao, Y., Urban, C., Neumann, O., Ayala-Orozco, C., Knight, M.W., Joshi, A., Nordlander, P., and Halas, N.J, ACS Nano, 2014, vol. 8, pp. 3222–3231. https://doi.org/10.1021/nn405663h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Braun, G.B., Friman, T., Pang, H.-B., Pallaoro, A., Hurtado de Mendoza, T., Willmore, A.-M.A., Kotamraju, V.R., Mann, A.P., She, Zh.-G., Sugahara, K.N., Reich, N.O., Teesalu, T., and Ruoslahti, E., Nat. Mater., 2014, vol. 13, pp. 904–911. https://doi.org/10.1038/nmat3982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ong, C., Lim, J.Z.Z., Ng, C.-T., Li, J.J., Yung, L.-Y.L., and Bay, B.-H., Curr. Med. Chem., 2013, vol. 20, pp. 772–781. https://doi.org/10.2174/0929867311320060003

    Article  CAS  PubMed  Google Scholar 

  19. Klimov, A.I., Zherebin, P.M., Gusev, A.A., Kudrinskiy, A.A., and Krutyakov, Y.A., IOP Conf. Ser.: Mater. Sci. Eng., 2015, ID 012034/1–012034/9. https://doi.org/10.1088/1757-899X/98/1/012034

  20. Mala, R., Ruby Celsia, A.S., Malathi Devi, S., and Geerthika, S., IOP Conf. Ser.: Mater. Sci. Eng., 2017, ID 012155/1–012155/11. https://doi.org/10.1088/1757-899X/225/1/012155

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Center for Collective Use of the PFRC UB RAS “Research of Materials and Substances” for spectral, analytical, and biological studies.

Funding

The work was financially supported by the Russian Foundation for Basic Research and the Government of the Perm Territory (grant no. 19-43-590019-r_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Gorbunova.

Ethics declarations

The authors declare that they have no conflicts of interest requiring disclosure in this article.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 2, pp. 206–215, January, 2021 https://doi.org/10.31857/S0044461821020080

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbunova, M.N., Batueva, T.D., Eroshenko, D.V. et al. Silver Nanocomposites Based on Copolymers N,N-Dialyl-Nʹ-acylhydrazines with Acrylic Monomers. Russ J Appl Chem 94, 192–201 (2021). https://doi.org/10.1134/S1070427221020087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221020087

Keywords:

Navigation